Use Handlebars prompt templates

Completed

Semantic Kernel supports using the Handlebars template syntax for prompts. Handlebars are a straightforward templating language primarily used for generating HTML, but it can also create other text formats. Handlebars templates consist of regular text interspersed with Handlebars expressions.

To use Handlebars template with Semantic Kernel, start by installing the package:

dotnet add package Microsoft.SemanticKernel.PromptTemplates.Handlebars --version 1.30.0

Next, import the package into your code with:

using Microsoft.SemanticKernel.PromptTemplates.Handlebars;

The following example demonstrates a chat prompt template that utilizes Handlebars syntax. The template contains Handlebars expressions, which are denoted by {{ and }}. When the template is executed, these expressions are replaced with values from an input object.

const string HandlebarsTemplate = """
    <message role="system">You are an AI assistant designed to help with image recognition tasks.</message>
    <message role="user">
        <text>{{request}}</text>
        <image>{{imageData}}</image>
    </message>
    """;

In this example, there are two input objects:

  1. request - Contains the request the assistant should complete.
  2. imageData - Contains the base64 image data.

To use the prompt template, you need to create a PromptTemplateConfig object that contains the template and its format. Afterwards, you create a KernelFunction object from the template configuration and specify the Handlebars template factory. Here's an example:

// Create the prompt template configuration
var templateFactory = new HandlebarsPromptTemplateFactory();
var promptTemplateConfig = new PromptTemplateConfig()
{
    Template = HandlebarsTemplate,
    TemplateFormat = "handlebars",
    Name = "Vision_Chat_Prompt",
};

// Create a function from the Handlebars template configuration
var function = kernel.CreateFunctionFromPrompt(promptTemplateConfig, templateFactory);

Now you can create the KernelArguments object with the input data and call your function.

var arguments = new KernelArguments(new Dictionary<string, object?>
{
    {"request","Describe this image:"},
    {"imageData", ""}
});

var response = await kernel.InvokeAsync(function, arguments);

The response to this prompt would be similar to the following output:

The image is a solid block of bright red color. There are no additional features, shapes, or textures present.

Use Handlebars templates in YAML prompts

You can create prompt functions from YAML files, allowing you to store your prompt templates alongside associated metadata and prompt execution settings. These files can be managed in version control, which is beneficial for tracking changes to complex prompts.

Below is an example of the YAML representation of the chat prompt used in the earlier section:

name: Vision_Chat_Prompt
template: |
    <message role="system">
        You are an AI assistant designed to help with image recognition tasks.
    </message>
    <message role="user">
        <text>{{request}}</text>
        <image>{{imageData}}</image>
    </message>
template_format: handlebars
description: Vision chat prompt template.
input_variables:
  - name: request
    description: Request details.
    is_required: true
  - name: imageData
    description: Base64 image data.
    is_required: true

To use this prompt, you load it as an embedded resource, convert it to a function and then invoke it.

// Load prompt from resource
var handlebarsPromptYaml = EmbeddedResource.Read("HandlebarsPrompt.yaml");

// Create the prompt function from the YAML resource
var templateFactory = new HandlebarsPromptTemplateFactory();
var function = kernel.CreateFunctionFromPromptYaml(handlebarsPromptYaml, templateFactory);

// Input data for the prompt rendering and execution
var arguments = new KernelArguments(new Dictionary<string, object?>
{
    {"request","Describe this image:"},
    {"imageData", ""}
});

// Invoke the prompt function
var response = await kernel.InvokeAsync(function, arguments);

Using Handlebars templates with Semantic Kernel is a simple and effective way to create dynamic prompts for your applications. The Handlebars syntax is easy to use and allows you to include variables, manage prompts in YAML for better organization, and integrate AI-driven functions seamlessly. This approach makes your prompts more flexible, reusable, and easier to maintain.

You can learn more about Handlebars prompt templates from the Handlebars Guide.