Custom Models - Train
Create and train a custom model. The request must include a source parameter that is either an externally accessible Azure storage blob container Uri (preferably a Shared Access Signature Uri) or valid path to a data folder in a locally mounted drive. When local paths are specified, they must follow the Linux/Unix path format and be an absolute path rooted to the input mount configuration setting value e.g., if '{Mounts:Input}' configuration setting value is '/input' then a valid source path would be '/input/contosodataset'. All data to be trained is expected to be under the source folder or sub folders under it. Models are trained using documents that are of the following content type - 'application/pdf', 'image/jpeg', 'image/png', 'image/tiff' or 'image/bmp'. Other type of content is ignored.
POST {endpoint}/formrecognizer/v2.1/custom/models
URI Parameters
Name | In | Required | Type | Description |
---|---|---|---|---|
endpoint
|
path | True |
string |
Supported Cognitive Services endpoints (protocol and hostname, for example: https://westus2.api.cognitive.microsoft.com). |
Request Header
Name | Required | Type | Description |
---|---|---|---|
Ocp-Apim-Subscription-Key | True |
string |
Request Body
Name | Required | Type | Description |
---|---|---|---|
source | True |
string |
Source path containing the training documents. |
modelName |
string |
Optional user defined model name (max length: 1024). |
|
sourceFilter |
Filter to apply to the documents in the source path for training. |
||
useLabelFile |
boolean |
Use label file for training a model. |
Responses
Name | Type | Description |
---|---|---|
201 Created |
Request is queued successfully. Headers Location: string |
|
Other Status Codes |
Response entity accompanying non-successful responses containing additional details about the error. |
Security
Ocp-Apim-Subscription-Key
Type:
apiKey
In:
header
Examples
Train custom model |
Train custom model with subfolder filter options |
Train custom model
Sample request
POST {endpoint}/formrecognizer/v2.1/custom/models
{
"source": "{azure_blob_endpoint}/input/data1?sasToken"
}
Sample response
Location: {endpoint}/formrecognizer/v2.1/custom/models/f973e3c1-1148-43bb-bea8-49d0603ab3a8
Train custom model with subfolder filter options
Sample request
POST {endpoint}/formrecognizer/v2.1/custom/models
{
"source": "{azure_blob_endpoint}/input/data1?sasToken",
"sourceFilter": {
"prefix": "",
"includeSubFolders": false
},
"useLabelFile": false
}
Sample response
Location: {endpoint}/formrecognizer/v2.1/custom/models/f973e3c1-1148-43bb-bea8-49d0603ab3a8
Definitions
Name | Description |
---|---|
Error |
|
Error |
|
Train |
Request parameter to train a new custom model. |
Train |
Filter to apply to the documents in the source path for training. |
ErrorInformation
Name | Type | Description |
---|---|---|
code |
string |
|
message |
string |
ErrorResponse
Name | Type | Description |
---|---|---|
error |
TrainRequest
Request parameter to train a new custom model.
Name | Type | Default value | Description |
---|---|---|---|
modelName |
string |
Optional user defined model name (max length: 1024). |
|
source |
string |
Source path containing the training documents. |
|
sourceFilter |
Filter to apply to the documents in the source path for training. |
||
useLabelFile |
boolean |
False |
Use label file for training a model. |
TrainSourceFilter
Filter to apply to the documents in the source path for training.
Name | Type | Default value | Description |
---|---|---|---|
includeSubFolders |
boolean |
False |
A flag to indicate if sub folders within the set of prefix folders will also need to be included when searching for content to be preprocessed. |
prefix |
string |
A case-sensitive prefix string to filter documents in the source path for training. For example, when using a Azure storage blob Uri, use the prefix to restrict sub folders for training. |