TrainingOutput Class
Defines a specialized output of certain PipelineSteps for use in a pipeline.
TrainingOutput enables an automated machine learning metric or model to be made available as a step output to be consumed by another step in an Azure Machine Learning Pipeline. Can be used with AutoMLStep or HyperDriveStep.
Initialize TrainingOutput.
param model_file: The specific model file to be included in the output. For HyperDriveStep only.
- Inheritance
-
builtins.objectTrainingOutput
Constructor
TrainingOutput(type, iteration=None, metric=None, model_file=None)
Parameters
Name | Description |
---|---|
type
Required
|
The type of training output. Possible values include: 'Metrics', 'Model'. |
iteration
|
The iteration number of the correspond training model.
This iteration number can be provided only with type 'Model'.
Provide either the Default value: None
|
metric
|
The metric to use to return the best training model.
The metric can be provided only with type 'Model'.
Provide either the Default value: None
|
model_file
|
The specific model file to be included in the output. For HyperDriveStep only. Default value: None
|
type
Required
|
The type of training output. Possible values include: 'Metrics', 'Model'. |
iteration
Required
|
The iteration number of the correspond training model.
This iteration number can be provided only with type 'Model'.
Provide either the |
metric
Required
|
The metric to use to return the best training model.
The metric can be provided only with type 'Model'.
Provide either the |
Remarks
TrainingOutput is used with PipelineData when constructing a Pipeline to enable other steps to consume the metrics or models generated by an AutoMLStep or HyperDriveStep.
Use TrainingOutput when defining an AutoMLStep as follows:
from azureml.pipeline.core import PipelineData, TrainingOutput
metrics_data = PipelineData(name='metrics_data', datastore=ds,
pipeline_output_name='metrics_output',
training_output=TrainingOutput(type='Metrics'))
model_data = PipelineData(name='model_data', datastore=ds,
pipeline_output_name='best_model_output',
training_output=TrainingOutput(type='Model'))
automl_step = AutoMLStep(name='automl_step',
automl_config=automl_config,
inputs=[input_data],
outputs=[metrics_data, model_data])
See an example of using TrainingOutput and an AutoMlStep step in the notebook https://aka.ms/pl-automl.
Attributes
iteration
Get the iteration number of the correspond training model.
Returns
Type | Description |
---|---|
The iteration number for training model. |
metric
Get the metric for best training model.
Returns
Type | Description |
---|---|
The metric name for the best training model. |
model_file
Get a model file to be included in the output for the best training model.
Returns
Type | Description |
---|---|
A particular file to be included in the output of the best training model. |
type
Get the type of training output.
Returns
Type | Description |
---|---|
Type of training output. Possible values include: 'Metrics', 'Model'. |