DatastoreOperations Class
Represents a client for performing operations on Datastores.
You should not instantiate this class directly. Instead, you should create MLClient and use this client via the property MLClient.datastores
- Inheritance
-
azure.ai.ml._scope_dependent_operations._ScopeDependentOperationsDatastoreOperations
Constructor
DatastoreOperations(operation_scope: OperationScope, operation_config: OperationConfig, serviceclient_2024_01_01_preview: AzureMachineLearningWorkspaces, serviceclient_2024_07_01_preview: AzureMachineLearningWorkspaces, **kwargs: Dict)
Parameters
Name | Description |
---|---|
operation_scope
Required
|
<xref:azure.ai.ml._scope_dependent_operations.OperationScope>
Scope variables for the operations classes of an MLClient object. |
operation_config
Required
|
<xref:azure.ai.ml._scope_dependent_operations.OperationConfig>
Common configuration for operations classes of an MLClient object. |
serviceclient_2024_01_01_preview
Required
|
<xref:<xref:azure.ai.ml._restclient.v2023_01_01_preview. _azure_machine_learning_workspaces.AzureMachineLearningWorkspaces>>
Service client to allow end users to operate on Azure Machine Learning Workspace resources. |
serviceclient_2024_07_01_preview
Required
|
<xref:<xref:azure.ai.ml._restclient.v2024_07_01_preview. _azure_machine_learning_workspaces.AzureMachineLearningWorkspaces>>
Service client to allow end users to operate on Azure Machine Learning Workspace resources. |
Methods
create_or_update |
Attaches the passed in datastore to the workspace or updates the datastore if it already exists. |
delete |
Deletes a datastore reference with the given name from the workspace. This method does not delete the actual datastore or underlying data in the datastore. |
get |
Returns information about the datastore referenced by the given name. |
get_default |
Returns the workspace's default datastore. |
list |
Lists all datastores and associated information within a workspace. |
mount |
Note This is an experimental method, and may change at any time. Please see https://aka.ms/azuremlexperimental for more information. Mount a datastore to a local path, so that you can access data inside it under a local path with any tools of your choice. |
create_or_update
Attaches the passed in datastore to the workspace or updates the datastore if it already exists.
create_or_update(datastore: Datastore) -> Datastore
Parameters
Name | Description |
---|---|
datastore
Required
|
The configuration of the datastore to attach. |
Returns
Type | Description |
---|---|
The attached datastore. |
Examples
Create datastore example.
from azure.ai.ml.entities import AzureBlobDatastore
datastore_example = AzureBlobDatastore(
name="azure_blob_datastore",
account_name="sdkvnextclidcdnrc7zb7xyy", # cspell:disable-line
container_name="testblob",
)
ml_client.datastores.create_or_update(datastore_example)
delete
Deletes a datastore reference with the given name from the workspace. This method does not delete the actual datastore or underlying data in the datastore.
delete(name: str) -> None
Parameters
Name | Description |
---|---|
name
Required
|
Name of the datastore |
Examples
Delete datastore example.
ml_client.datastores.delete("azure_blob_datastore")
get
Returns information about the datastore referenced by the given name.
get(name: str, *, include_secrets: bool = False) -> Datastore
Parameters
Name | Description |
---|---|
name
Required
|
Datastore name |
Keyword-Only Parameters
Name | Description |
---|---|
include_secrets
|
Include datastore secrets in the returned datastore, defaults to False |
Returns
Type | Description |
---|---|
Datastore with the specified name. |
Examples
Get datastore example.
ml_client.datastores.get("azure_blob_datastore")
get_default
Returns the workspace's default datastore.
get_default(*, include_secrets: bool = False) -> Datastore
Keyword-Only Parameters
Name | Description |
---|---|
include_secrets
|
Include datastore secrets in the returned datastore, defaults to False |
Returns
Type | Description |
---|---|
The default datastore. |
Examples
Get default datastore example.
ml_client.datastores.get_default()
list
Lists all datastores and associated information within a workspace.
list(*, include_secrets: bool = False) -> Iterable[Datastore]
Keyword-Only Parameters
Name | Description |
---|---|
include_secrets
|
Include datastore secrets in returned datastores, defaults to False |
Returns
Type | Description |
---|---|
An iterator like instance of Datastore objects |
Examples
List datastore example.
ml_client.datastores.list()
mount
Note
This is an experimental method, and may change at any time. Please see https://aka.ms/azuremlexperimental for more information.
Mount a datastore to a local path, so that you can access data inside it under a local path with any tools of your choice.
mount(path: str, mount_point: str | None = None, mode: str = 'ro_mount', debug: bool = False, persistent: bool = False, **_kwargs) -> None
Parameters
Name | Description |
---|---|
path
Required
|
The data store path to mount, in the form of or azureml://datastores/. |
mount_point
Required
|
A local path used as mount point. |
mode
Required
|
Mount mode, either ro_mount (read-only) or rw_mount (read-write). |
debug
Required
|
Whether to enable verbose logging. |
persistent
Required
|
Whether to persist the mount after reboot. Applies only when running on Compute Instance, where the 'CI_NAME' environment variable is set." |
Returns
Type | Description |
---|---|
None |
Azure SDK for Python