Share via


Export Count Table

Important

Support for Machine Learning Studio (classic) will end on 31 August 2024. We recommend you transition to Azure Machine Learning by that date.

Beginning 1 December 2021, you will not be able to create new Machine Learning Studio (classic) resources. Through 31 August 2024, you can continue to use the existing Machine Learning Studio (classic) resources.

ML Studio (classic) documentation is being retired and may not be updated in the future.

Exports the count table from a saved transformation for use with new data

Category: Learning with Counts

Note

Applies to: Machine Learning Studio (classic) only

Similar drag-and-drop modules are available in Azure Machine Learning designer.

Module overview

This article describes how to use the Export Count Table module in Machine Learning Studio (classic). The Export Count Table module is provided for backward compatibility with experiments that use the deprecated Build Count Table and deprecated Count Featurizer modules.

When you use the new Build Counting Transform module to create count-based features, the module outputs both a featurized dataset and a transform that creates features from counts. By using the Export Count Table module, you can separate the count-based features output by this newer module into count metadata and a count table. These output formats were used by earlier, now deprecated modules:

For general information about count tables and how they are used to create features, see Learning with Counts.

For all new experiments, we recommend that you use the following modules:

How to configure Export Count Table

  1. In Machine Learning Studio (classic), open the experiment where you want to use the imported count table.

  2. Locate the saved count transformation, and add it to the experiment.

  3. Connect the output of the saved count transformation (labeled transformation) to Export Count Table.

  4. Add the Count Featurizer (deprecated) module to the experiment, and connect it to the two outputs of Export Count Table.

  5. The Count Featurizer (deprecated) module requires an additional input, for the dataset you want to featurize. Connect the dataset to apply the saved transformation to outputs.

  6. Set any necessary parameters for Count Featurizer (deprecated), including the label column, the count columns, the columns to featurize, and the features to output.

    You must select a subset of the columns that were originally selected for the counting transformation. However, the Export Count Table module does not provide the list of these columns, so you should review the original experiment and make a note of which columns were used. If you select a column that was not used when creating the transformation, an error is raised.

Examples

Explore examples of count-based featurization using these sample experiments in the Azure AI Gallery:

Note

If you open a Gallery experiment created using the deprecated versions of the Learning with Counts modules, the experiment is automatically upgraded to use the newer modules.

Expected inputs

Name Type Description
Counting transform ITransform interface The counting transform.

Outputs

Name Type Description
Dracula count metadata Data Table The metadata of the counts.
Dracula count table Data Table The count table.

Exceptions

Exception Description
Error 0003 Exception occurs if one or more of inputs are null or empty.
Error 0086 Exception occurs when a counting transform is invalid.

For a list of errors specific to Studio (classic) modules, see Machine Learning Error codes.

For a list of API exceptions, see Machine Learning REST API Error Codes.

See also

Learning with Counts