Edit

Share via


System.Numerics.BigInteger struct

This article provides supplementary remarks to the reference documentation for this API.

The BigInteger type is an immutable type that represents an arbitrarily large integer whose value in theory has no upper or lower bounds. The members of the BigInteger type closely parallel those of other integral types (the Byte, Int16, Int32, Int64, SByte, UInt16, UInt32, and UInt64 types). This type differs from the other integral types in .NET, which have a range indicated by their MinValue and MaxValue properties.

Note

Because the BigInteger type is immutable (see Mutability) and because it has no upper or lower bounds, an OutOfMemoryException can be thrown for any operation that causes a BigInteger value to grow too large.

Instantiate a BigInteger object

You can instantiate a BigInteger object in several ways:

  • You can use the new keyword and provide any integral or floating-point value as a parameter to the BigInteger constructor. (Floating-point values are truncated before they are assigned to the BigInteger.) The following example illustrates how to use the new keyword to instantiate BigInteger values.

    BigInteger bigIntFromDouble = new BigInteger(179032.6541);
    Console.WriteLine(bigIntFromDouble);
    BigInteger bigIntFromInt64 = new BigInteger(934157136952);
    Console.WriteLine(bigIntFromInt64);
    // The example displays the following output:
    //   179032
    //   934157136952
    
    Dim bigIntFromDouble As New BigInteger(179032.6541)
    Console.WriteLine(bigIntFromDouble)
    Dim bigIntFromInt64 As New BigInteger(934157136952)
    Console.WriteLine(bigIntFromInt64)
    ' The example displays the following output:
    '   179032
    '   934157136952
    
  • You can declare a BigInteger variable and assign it a value just as you would any numeric type, as long as that value is an integral type. The following example uses assignment to create a BigInteger value from an Int64.

    long longValue = 6315489358112;
    BigInteger assignedFromLong = longValue;
    Console.WriteLine(assignedFromLong);
    // The example displays the following output:
    //   6315489358112
    
    Dim longValue As Long = 6315489358112
    Dim assignedFromLong As BigInteger = longValue
    Console.WriteLine(assignedFromLong)
    ' The example displays the following output:
    '   6315489358112
    
  • You can assign a decimal or floating-point value to a BigInteger object if you cast the value or convert it first. The following example explicitly casts (in C#) or converts (in Visual Basic) a Double and a Decimal value to a BigInteger.

    BigInteger assignedFromDouble = (BigInteger) 179032.6541;
    Console.WriteLine(assignedFromDouble);
    BigInteger assignedFromDecimal = (BigInteger) 64312.65m;
    Console.WriteLine(assignedFromDecimal);
    // The example displays the following output:
    //   179032
    //   64312
    
    Dim assignedFromDouble As BigInteger = CType(179032.6541, BigInteger)
    Console.WriteLine(assignedFromDouble)
    Dim assignedFromDecimal As BigInteger = CType(64312.65D, BigInteger)
    Console.WriteLine(assignedFromDecimal)
    ' The example displays the following output:
    '   179032
    '   64312
    

These methods enable you to instantiate a BigInteger object whose value is in the range of one of the existing numeric types only. You can instantiate a BigInteger object whose value can exceed the range of the existing numeric types in one of three ways:

  • You can use the new keyword and provide a byte array of any size to the BigInteger.BigInteger constructor. For example:

    byte[] byteArray = { 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0};
    BigInteger newBigInt = new BigInteger(byteArray);
    Console.WriteLine("The value of newBigInt is {0} (or 0x{0:x}).", newBigInt);
    // The example displays the following output:
    //   The value of newBigInt is 4759477275222530853130 (or 0x102030405060708090a).
    
    Dim byteArray() As Byte = {10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0}
    Dim newBigInt As New BigInteger(byteArray)
    Console.WriteLine("The value of newBigInt is {0} (or 0x{0:x}).", newBigInt)
    ' The example displays the following output:
    '   The value of newBigInt is 4759477275222530853130 (or 0x102030405060708090a).
    
  • You can call the Parse or TryParse methods to convert the string representation of a number to a BigInteger. For example:

    string positiveString = "91389681247993671255432112000000";
    string negativeString = "-90315837410896312071002088037140000";
    BigInteger posBigInt = 0;
    BigInteger negBigInt = 0;
    
    try {
       posBigInt = BigInteger.Parse(positiveString);
       Console.WriteLine(posBigInt);
    }
    catch (FormatException)
    {
       Console.WriteLine("Unable to convert the string '{0}' to a BigInteger value.",
                         positiveString);
    }
    
    if (BigInteger.TryParse(negativeString, out negBigInt))
      Console.WriteLine(negBigInt);
    else
       Console.WriteLine("Unable to convert the string '{0}' to a BigInteger value.",
                          negativeString);
    
    // The example displays the following output:
    //   9.1389681247993671255432112E+31
    //   -9.0315837410896312071002088037E+34
    
    Dim positiveString As String = "91389681247993671255432112000000"
    Dim negativeString As String = "-90315837410896312071002088037140000"
    Dim posBigInt As BigInteger = 0
    Dim negBigInt As BigInteger = 0
    
    Try
        posBigInt = BigInteger.Parse(positiveString)
        Console.WriteLine(posBigInt)
    Catch e As FormatException
        Console.WriteLine("Unable to convert the string '{0}' to a BigInteger value.",
                          positiveString)
    End Try
    
    If BigInteger.TryParse(negativeString, negBigInt) Then
        Console.WriteLine(negBigInt)
    Else
        Console.WriteLine("Unable to convert the string '{0}' to a BigInteger value.",
                           negativeString)
    End If
    ' The example displays the following output:
    '   9.1389681247993671255432112E+31
    '   -9.0315837410896312071002088037E+34
    
  • You can call a static (Shared in Visual Basic) BigInteger method that performs some operation on a numeric expression and returns a calculated BigInteger result. The following example does this by cubing UInt64.MaxValue and assigning the result to a BigInteger.

    BigInteger number = BigInteger.Pow(UInt64.MaxValue, 3);
    Console.WriteLine(number);
    // The example displays the following output:
    //    6277101735386680762814942322444851025767571854389858533375
    
    Dim number As BigInteger = BigInteger.Pow(UInt64.MaxValue, 3)
    Console.WriteLine(number)
    ' The example displays the following output:
    ' 6277101735386680762814942322444851025767571854389858533375
    

The uninitialized value of a BigInteger is Zero.

Perform operations on BigInteger values

You can use a BigInteger instance as you would use any other integral type. BigInteger overloads the standard numeric operators to enable you to perform basic mathematical operations such as addition, subtraction, division, multiplication, and unary negation. You can also use the standard numeric operators to compare two BigInteger values with each other. Like the other integral types, BigInteger also supports the bitwise And, Or, XOr, left shift, and right shift operators. For languages that do not support custom operators, the BigInteger structure also provides equivalent methods for performing mathematical operations. These include Add, Divide, Multiply, Negate, Subtract, and several others.

Many members of the BigInteger structure correspond directly to members of the other integral types. In addition, BigInteger adds members such as the following:

Many of these additional members correspond to the members of the Math class, which provides the functionality to work with the primitive numeric types.

Mutability

The following example instantiates a BigInteger object and then increments its value by one.

BigInteger number = BigInteger.Multiply(Int64.MaxValue, 3);
number++;
Console.WriteLine(number);
Dim number As BigInteger = BigInteger.Multiply(Int64.MaxValue, 3)
number += 1
Console.WriteLine(number)

Although this example appears to modify the value of the existing object, this is not the case. BigInteger objects are immutable, which means that internally, the common language runtime actually creates a new BigInteger object and assigns it a value one greater than its previous value. This new object is then returned to the caller.

Note

The other numeric types in .NET are also immutable. However, because the BigInteger type has no upper or lower bounds, its values can grow extremely large and have a measurable impact on performance.

Although this process is transparent to the caller, it does incur a performance penalty. In some cases, especially when repeated operations are performed in a loop on very large BigInteger values, that performance penalty can be significant. For example, in the following example, an operation is performed repetitively up to a million times, and a BigInteger value is incremented by one every time the operation succeeds.

BigInteger number = Int64.MaxValue ^ 5;
int repetitions = 1000000;
// Perform some repetitive operation 1 million times.
for (int ctr = 0; ctr <= repetitions; ctr++)
{
    // Perform some operation. If it fails, exit the loop.
    if (!SomeOperationSucceeds()) break;
    // The following code executes if the operation succeeds.
    number++;
}
Dim number As BigInteger = Int64.MaxValue ^ 5
Dim repetitions As Integer = 1000000
' Perform some repetitive operation 1 million times.
For ctr As Integer = 0 To repetitions
    ' Perform some operation. If it fails, exit the loop.
    If Not SomeOperationSucceeds() Then Exit For
    ' The following code executes if the operation succeeds.
    number += 1
Next

In such a case, you can improve performance by performing all intermediate assignments to an Int32 variable. The final value of the variable can then be assigned to the BigInteger object when the loop exits. The following example provides an illustration.

BigInteger number = Int64.MaxValue ^ 5;
int repetitions = 1000000;
int actualRepetitions = 0;
// Perform some repetitive operation 1 million times.
for (int ctr = 0; ctr <= repetitions; ctr++)
{
    // Perform some operation. If it fails, exit the loop.
    if (!SomeOperationSucceeds()) break;
    // The following code executes if the operation succeeds.
    actualRepetitions++;
}
number += actualRepetitions;
Dim number As BigInteger = Int64.MaxValue ^ 5
Dim repetitions As Integer = 1000000
Dim actualRepetitions As Integer = 0
' Perform some repetitive operation 1 million times.
For ctr As Integer = 0 To repetitions
    ' Perform some operation. If it fails, exit the loop.
    If Not SomeOperationSucceeds() Then Exit For
    ' The following code executes if the operation succeeds.
    actualRepetitions += 1
Next
number += actualRepetitions

Byte arrays and hexadecimal strings

If you convert BigInteger values to byte arrays, or if you convert byte arrays to BigInteger values, you must consider the order of bytes. The BigInteger structure expects the individual bytes in a byte array to appear in little-endian order (that is, the lower-order bytes of the value precede the higher-order bytes). You can round-trip a BigInteger value by calling the ToByteArray method and then passing the resulting byte array to the BigInteger(Byte[]) constructor, as the following example shows.

BigInteger number = BigInteger.Pow(Int64.MaxValue, 2);
Console.WriteLine(number);

// Write the BigInteger value to a byte array.
byte[] bytes = number.ToByteArray();

// Display the byte array.
foreach (byte byteValue in bytes)
    Console.Write("0x{0:X2} ", byteValue);
Console.WriteLine();

// Restore the BigInteger value from a Byte array.
BigInteger newNumber = new BigInteger(bytes);
Console.WriteLine(newNumber);
// The example displays the following output:
//    8.5070591730234615847396907784E+37
//    0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0x3F
//
//    8.5070591730234615847396907784E+37
Dim number As BigInteger = BigInteger.Pow(Int64.MaxValue, 2)     
Console.WriteLine(number)

' Write the BigInteger value to a byte array.
Dim bytes() As Byte = number.ToByteArray()

' Display the byte array.
For Each byteValue As Byte In bytes
   Console.Write("0x{0:X2} ", byteValue)
Next   
Console.WriteLine()

' Restore the BigInteger value from a Byte array.
Dim newNumber As BigInteger = New BigInteger(bytes)
Console.WriteLine(newNumber)               
' The example displays the following output:
'    8.5070591730234615847396907784E+37
'    0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0x3F
'    
'    8.5070591730234615847396907784E+37

To instantiate a BigInteger value from a byte array that represents a value of some other integral type, you can pass the integral value to the BitConverter.GetBytes method, and then pass the resulting byte array to the BigInteger(Byte[]) constructor. The following example instantiates a BigInteger value from a byte array that represents an Int16 value.

short originalValue = 30000;
Console.WriteLine(originalValue);

// Convert the Int16 value to a byte array.
byte[] bytes = BitConverter.GetBytes(originalValue);

// Display the byte array.
foreach (byte byteValue in bytes)
    Console.Write("0x{0} ", byteValue.ToString("X2"));
Console.WriteLine();

// Pass byte array to the BigInteger constructor.
BigInteger number = new BigInteger(bytes);
Console.WriteLine(number);
// The example displays the following output:
//       30000
//       0x30 0x75
//       30000
Dim originalValue As Short = 30000
Console.WriteLine(originalValue)

' Convert the Int16 value to a byte array.
Dim bytes() As Byte = BitConverter.GetBytes(originalValue)

' Display the byte array.
For Each byteValue As Byte In bytes
   Console.Write("0x{0} ", byteValue.ToString("X2"))
Next    
Console.WriteLine() 

' Pass byte array to the BigInteger constructor.
Dim number As BigInteger = New BigInteger(bytes)
Console.WriteLine(number)
' The example displays the following output:
'       30000
'       0x30 0x75
'       30000

The BigInteger structure assumes that negative values are stored by using two's complement representation. Because the BigInteger structure represents a numeric value with no fixed length, the BigInteger(Byte[]) constructor always interprets the most significant bit of the last byte in the array as a sign bit. To prevent the BigInteger(Byte[]) constructor from confusing the two's complement representation of a negative value with the sign and magnitude representation of a positive value, positive values in which the most significant bit of the last byte in the byte array would ordinarily be set should include an additional byte whose value is 0. For example, 0xC0 0xBD 0xF0 0xFF is the little-endian hexadecimal representation of either -1,000,000 or 4,293,967,296. Because the most significant bit of the last byte in this array is on, the value of the byte array would be interpreted by the BigInteger(Byte[]) constructor as -1,000,000. To instantiate a BigInteger whose value is positive, a byte array whose elements are 0xC0 0xBD 0xF0 0xFF 0x00 must be passed to the constructor. The following example illustrates this.

int negativeNumber = -1000000;
uint positiveNumber = 4293967296;

byte[] negativeBytes = BitConverter.GetBytes(negativeNumber);
BigInteger negativeBigInt = new BigInteger(negativeBytes);
Console.WriteLine(negativeBigInt.ToString("N0"));

byte[] tempPosBytes = BitConverter.GetBytes(positiveNumber);
byte[] positiveBytes = new byte[tempPosBytes.Length + 1];
Array.Copy(tempPosBytes, positiveBytes, tempPosBytes.Length);
BigInteger positiveBigInt = new BigInteger(positiveBytes);
Console.WriteLine(positiveBigInt.ToString("N0"));
// The example displays the following output:
//    -1,000,000
//    4,293,967,296
Dim negativeNumber As Integer = -1000000
Dim positiveNumber As UInteger = 4293967296

Dim negativeBytes() As Byte = BitConverter.GetBytes(negativeNumber) 
Dim negativeBigInt As New BigInteger(negativeBytes)
Console.WriteLine(negativeBigInt.ToString("N0"))

Dim tempPosBytes() As Byte = BitConverter.GetBytes(positiveNumber)
Dim positiveBytes(tempposBytes.Length) As Byte
Array.Copy(tempPosBytes, positiveBytes, tempPosBytes.Length)
Dim positiveBigInt As New BigInteger(positiveBytes)
Console.WriteLine(positiveBigInt.ToString("N0")) 
' The example displays the following output:
'    -1,000,000
'    4,293,967,296

Byte arrays created by the ToByteArray method from positive values include this extra zero-value byte. Therefore, the BigInteger structure can successfully round-trip values by assigning them to, and then restoring them from, byte arrays, as the following example shows.

BigInteger positiveValue = 15777216;
BigInteger negativeValue = -1000000;

Console.WriteLine("Positive value: " + positiveValue.ToString("N0"));
byte[] bytes = positiveValue.ToByteArray();

foreach (byte byteValue in bytes)
    Console.Write("{0:X2} ", byteValue);
Console.WriteLine();
positiveValue = new BigInteger(bytes);
Console.WriteLine("Restored positive value: " + positiveValue.ToString("N0"));

Console.WriteLine();

Console.WriteLine("Negative value: " + negativeValue.ToString("N0"));
bytes = negativeValue.ToByteArray();
foreach (byte byteValue in bytes)
    Console.Write("{0:X2} ", byteValue);
Console.WriteLine();
negativeValue = new BigInteger(bytes);
Console.WriteLine("Restored negative value: " + negativeValue.ToString("N0"));
// The example displays the following output:
//       Positive value: 15,777,216
//       C0 BD F0 00
//       Restored positive value: 15,777,216
//
//       Negative value: -1,000,000
//       C0 BD F0
//       Restored negative value: -1,000,000
Dim positiveValue As BigInteger = 15777216
Dim negativeValue As BigInteger = -1000000

Console.WriteLine("Positive value: " + positiveValue.ToString("N0"))
Dim bytes() As Byte = positiveValue.ToByteArray()
For Each byteValue As Byte In bytes
   Console.Write("{0:X2} ", byteValue)
Next
Console.WriteLine()
positiveValue = New BigInteger(bytes)
Console.WriteLine("Restored positive value: " + positiveValue.ToString("N0"))

Console.WriteLine()
   
Console.WriteLIne("Negative value: " + negativeValue.ToString("N0"))
bytes = negativeValue.ToByteArray()
For Each byteValue As Byte In bytes
   Console.Write("{0:X2} ", byteValue)
Next
Console.WriteLine()
negativeValue = New BigInteger(bytes)
Console.WriteLine("Restored negative value: " + negativeValue.ToString("N0"))
' The example displays the following output:
'       Positive value: 15,777,216
'       C0 BD F0 00
'       Restored positive value: 15,777,216
'       
'       Negative value: -1,000,000
'       C0 BD F0
'       Restored negative value: -1,000,000

However, you may need to add this additional zero-value byte to byte arrays that are created dynamically by the developer or that are returned by methods that convert unsigned integers to byte arrays (such as BitConverter.GetBytes(UInt16), BitConverter.GetBytes(UInt32), and BitConverter.GetBytes(UInt64)).

When parsing a hexadecimal string, the BigInteger.Parse(String, NumberStyles) and BigInteger.Parse(String, NumberStyles, IFormatProvider) methods assume that if the most significant bit of the first byte in the string is set, or if the first hexadecimal digit of the string represents the lower four bits of a byte value, the value is represented by using two's complement representation. For example, both "FF01" and "F01" represent the decimal value -255. To differentiate positive from negative values, positive values should include a leading zero. The relevant overloads of the ToString method, when they are passed the "X" format string, add a leading zero to the returned hexadecimal string for positive values. This makes it possible to round-trip BigInteger values by using the ToString and Parse methods, as the following example shows.

BigInteger negativeNumber = -1000000;
BigInteger positiveNumber = 15777216;

string negativeHex = negativeNumber.ToString("X");
string positiveHex = positiveNumber.ToString("X");

BigInteger negativeNumber2, positiveNumber2;
negativeNumber2 = BigInteger.Parse(negativeHex,
                                   NumberStyles.HexNumber);
positiveNumber2 = BigInteger.Parse(positiveHex,
                                   NumberStyles.HexNumber);

Console.WriteLine("Converted {0:N0} to {1} back to {2:N0}.",
                   negativeNumber, negativeHex, negativeNumber2);
Console.WriteLine("Converted {0:N0} to {1} back to {2:N0}.",
                   positiveNumber, positiveHex, positiveNumber2);
// The example displays the following output:
//       Converted -1,000,000 to F0BDC0 back to -1,000,000.
//       Converted 15,777,216 to 0F0BDC0 back to 15,777,216.
Dim negativeNumber As BigInteger = -1000000
Dim positiveNumber As BigInteger = 15777216

Dim negativeHex As String = negativeNumber.ToString("X")
Dim positiveHex As string = positiveNumber.ToString("X")

Dim negativeNumber2, positiveNumber2 As BigInteger 
negativeNumber2 = BigInteger.Parse(negativeHex, 
                                   NumberStyles.HexNumber)
positiveNumber2 = BigInteger.Parse(positiveHex,
                                   NumberStyles.HexNumber)

Console.WriteLine("Converted {0:N0} to {1} back to {2:N0}.", 
                   negativeNumber, negativeHex, negativeNumber2)                                         
Console.WriteLine("Converted {0:N0} to {1} back to {2:N0}.", 
                   positiveNumber, positiveHex, positiveNumber2)                                         
' The example displays the following output:
'       Converted -1,000,000 to F0BDC0 back to -1,000,000.
'       Converted 15,777,216 to 0F0BDC0 back to 15,777,216.

However, the hexadecimal strings created by calling the ToString methods of the other integral types or the overloads of the ToString method that include a toBase parameter do not indicate the sign of the value or the source data type from which the hexadecimal string was derived. Successfully instantiating a BigInteger value from such a string requires some additional logic. The following example provides one possible implementation.

using System;
using System.Globalization;
using System.Numerics;

public struct HexValue
{
    public int Sign;
    public string Value;
}

public class ByteHexExample2
{
    public static void Main()
    {
        uint positiveNumber = 4039543321;
        int negativeNumber = -255423975;

        // Convert the numbers to hex strings.
        HexValue hexValue1, hexValue2;
        hexValue1.Value = positiveNumber.ToString("X");
        hexValue1.Sign = Math.Sign(positiveNumber);

        hexValue2.Value = Convert.ToString(negativeNumber, 16);
        hexValue2.Sign = Math.Sign(negativeNumber);

        // Round-trip the hexadecimal values to BigInteger values.
        string hexString;
        BigInteger positiveBigInt, negativeBigInt;

        hexString = (hexValue1.Sign == 1 ? "0" : "") + hexValue1.Value;
        positiveBigInt = BigInteger.Parse(hexString, NumberStyles.HexNumber);
        Console.WriteLine("Converted {0} to {1} and back to {2}.",
                          positiveNumber, hexValue1.Value, positiveBigInt);

        hexString = (hexValue2.Sign == 1 ? "0" : "") + hexValue2.Value;
        negativeBigInt = BigInteger.Parse(hexString, NumberStyles.HexNumber);
        Console.WriteLine("Converted {0} to {1} and back to {2}.",
                          negativeNumber, hexValue2.Value, negativeBigInt);
    }
}
// The example displays the following output:
//       Converted 4039543321 to F0C68A19 and back to 4039543321.
//       Converted -255423975 to f0c68a19 and back to -255423975.
Imports System.Globalization
Imports System.Numerics

Public Structure HexValue
    Public Sign As Integer
    Public Value As String
End Structure

Module Example2
    Public Sub Main()
        Dim positiveNumber As UInteger = 4039543321
        Dim negativeNumber As Integer = -255423975

        ' Convert the numbers to hex strings.
        Dim hexValue1, hexValue2 As HexValue
        hexValue1.Value = positiveNumber.ToString("X")
        hexValue1.Sign = Math.Sign(positiveNumber)

        hexValue2.Value = Convert.ToString(negativeNumber, 16)
        hexValue2.Sign = Math.Sign(negativeNumber)

        ' Round-trip the hexadecimal values to BigInteger values.
        Dim hexString As String
        Dim positiveBigInt, negativeBigInt As BigInteger

        hexString = CStr(IIf(hexValue1.Sign = 1, "0", "")) + hexValue1.Value
        positiveBigInt = BigInteger.Parse(hexString, NumberStyles.HexNumber)
        Console.WriteLine("Converted {0} to {1} and back to {2}.",
                        positiveNumber, hexValue1.Value, positiveBigInt)

        hexString = CStr(IIf(hexValue2.Sign = 1, "0", "")) + hexValue2.Value
        negativeBigInt = BigInteger.Parse(hexString, NumberStyles.HexNumber)
        Console.WriteLine("Converted {0} to {1} and back to {2}.",
                        negativeNumber, hexValue2.Value, negativeBigInt)

    End Sub
End Module
' The example displays the following output:
'       Converted 4039543321 to F0C68A19 and back to 4039543321.
'       Converted -255423975 to f0c68a19 and back to -255423975.