Share via


SrCnnAnomalyDetectionBase Class

Definition

public class SrCnnAnomalyDetectionBase : Microsoft.ML.ITransformer
type SrCnnAnomalyDetectionBase = class
    interface ITransformer
    interface ICanSaveModel
Public Class SrCnnAnomalyDetectionBase
Implements ITransformer
Inheritance
SrCnnAnomalyDetectionBase
Derived
Implements

Methods

GetOutputSchema(DataViewSchema)

Schema propagation for transformers. Returns the output schema of the data, if the input schema is like the one provided.

GetStatefulRowToRowMapper(DataViewSchema)

Same as GetRowToRowMapper(DataViewSchema) but also supports mechanism to save the state.

Transform(IDataView)

Initialize a transformer which will do lambda transfrom on input data in prediction engine. No actual transformations happen here, just schema validation.

Explicit Interface Implementations

ICanSaveModel.Save(ModelSaveContext)

For saving a model into a repository.

ITransformer.GetRowToRowMapper(DataViewSchema)

Constructs a row-to-row mapper based on an input schema. If IsRowToRowMapper is false, then an exception should be thrown. If the input schema is in any way unsuitable for constructing the mapper, an exception should likewise be thrown.

ITransformer.IsRowToRowMapper

Whether a call to GetRowToRowMapper(DataViewSchema) should succeed, on an appropriate schema.

Extension Methods

Preview(ITransformer, IDataView, Int32)

Preview an effect of the transformer on a given data.

Append<TTrans>(ITransformer, TTrans)

Create a new transformer chain, by appending another transformer to the end of this transformer chain.

CreateTimeSeriesEngine<TSrc,TDst>(ITransformer, IHostEnvironment, PredictionEngineOptions)

TimeSeriesPredictionEngine<TSrc,TDst> creates a prediction engine for a time series pipeline. It updates the state of time series model with observations seen at prediction phase and allows checkpointing the model.

CreateTimeSeriesEngine<TSrc,TDst>(ITransformer, IHostEnvironment, Boolean, SchemaDefinition, SchemaDefinition)

TimeSeriesPredictionEngine<TSrc,TDst> creates a prediction engine for a time series pipeline. It updates the state of time series model with observations seen at prediction phase and allows checkpointing the model.

Applies to