Share via


SgdCalibratedTrainer.Options Class

Definition

Options for the SgdCalibratedTrainer as used in SgdCalibrated(Options).

public sealed class SgdCalibratedTrainer.Options : Microsoft.ML.Trainers.SgdBinaryTrainerBase<Microsoft.ML.Calibrators.CalibratedModelParametersBase<Microsoft.ML.Trainers.LinearBinaryModelParameters,Microsoft.ML.Calibrators.PlattCalibrator>>.OptionsBase
type SgdCalibratedTrainer.Options = class
    inherit SgdBinaryTrainerBase<CalibratedModelParametersBase<LinearBinaryModelParameters, PlattCalibrator>>.OptionsBase
Public NotInheritable Class SgdCalibratedTrainer.Options
Inherits SgdBinaryTrainerBase(Of CalibratedModelParametersBase(Of LinearBinaryModelParameters, PlattCalibrator)).OptionsBase
Inheritance

Constructors

SgdCalibratedTrainer.Options()

Fields

CheckFrequency

Determines the frequency of checking for convergence in terms of number of iterations.

(Inherited from SgdBinaryTrainerBase<TModel>.OptionsBase)
ConvergenceTolerance

The convergence tolerance. If the exponential moving average of loss reductions falls below this tolerance, the algorithm is deemed to have converged and will stop.

(Inherited from SgdBinaryTrainerBase<TModel>.OptionsBase)
ExampleWeightColumnName

Column to use for example weight.

(Inherited from TrainerInputBaseWithWeight)
FeatureColumnName

Column to use for features.

(Inherited from TrainerInputBase)
L2Regularization

The L2 weight for regularization.

(Inherited from SgdBinaryTrainerBase<TModel>.OptionsBase)
LabelColumnName

Column to use for labels.

(Inherited from TrainerInputBaseWithLabel)
LearningRate

The initial learning rate used by SGD.

(Inherited from SgdBinaryTrainerBase<TModel>.OptionsBase)
NumberOfIterations

The maximum number of passes through the training dataset.

(Inherited from SgdBinaryTrainerBase<TModel>.OptionsBase)
NumberOfThreads

The degree of lock-free parallelism used by SGD.

(Inherited from SgdBinaryTrainerBase<TModel>.OptionsBase)
PositiveInstanceWeight

The weight to be applied to the positive class. This is useful for training with imbalanced data.

(Inherited from SgdBinaryTrainerBase<TModel>.OptionsBase)
Shuffle

Determines whether to shuffle data for each training iteration.

(Inherited from SgdBinaryTrainerBase<TModel>.OptionsBase)

Applies to