Share via


SdcaRegressionTrainer.Options Class

Definition

Options for the SdcaRegressionTrainer.

public sealed class SdcaRegressionTrainer.Options : Microsoft.ML.Trainers.SdcaTrainerBase<Microsoft.ML.Trainers.SdcaRegressionTrainer.Options,Microsoft.ML.Data.RegressionPredictionTransformer<Microsoft.ML.Trainers.LinearRegressionModelParameters>,Microsoft.ML.Trainers.LinearRegressionModelParameters>.OptionsBase
type SdcaRegressionTrainer.Options = class
    inherit SdcaTrainerBase<SdcaRegressionTrainer.Options, RegressionPredictionTransformer<LinearRegressionModelParameters>, LinearRegressionModelParameters>.OptionsBase
Public NotInheritable Class SdcaRegressionTrainer.Options
Inherits SdcaTrainerBase(Of SdcaRegressionTrainer.Options, RegressionPredictionTransformer(Of LinearRegressionModelParameters), LinearRegressionModelParameters).OptionsBase
Inheritance

Constructors

SdcaRegressionTrainer.Options()

Create the SdcaRegressionTrainer.Options object.

Fields

BiasLearningRate

The learning rate for adjusting bias from being regularized.

(Inherited from SdcaTrainerBase<TOptions,TTransformer,TModel>.OptionsBase)
ConvergenceCheckFrequency

Determines the frequency of checking for convergence in terms of number of iterations.

(Inherited from SdcaTrainerBase<TOptions,TTransformer,TModel>.OptionsBase)
ConvergenceTolerance

The tolerance for the ratio between duality gap and primal loss for convergence checking.

(Inherited from SdcaTrainerBase<TOptions,TTransformer,TModel>.OptionsBase)
ExampleWeightColumnName

Column to use for example weight.

(Inherited from TrainerInputBaseWithWeight)
FeatureColumnName

Column to use for features.

(Inherited from TrainerInputBase)
L1Regularization

The L1 regularization hyperparameter.

(Inherited from SdcaTrainerBase<TOptions,TTransformer,TModel>.OptionsBase)
L2Regularization

The L2 regularization hyperparameter.

(Inherited from SdcaTrainerBase<TOptions,TTransformer,TModel>.OptionsBase)
LabelColumnName

Column to use for labels.

(Inherited from TrainerInputBaseWithLabel)
MaximumNumberOfIterations

The maximum number of passes to perform over the data.

(Inherited from SdcaTrainerBase<TOptions,TTransformer,TModel>.OptionsBase)
NumberOfThreads

The degree of lock-free parallelism.

(Inherited from SdcaTrainerBase<TOptions,TTransformer,TModel>.OptionsBase)
Shuffle

Determines whether to shuffle data for each training iteration.

(Inherited from SdcaTrainerBase<TOptions,TTransformer,TModel>.OptionsBase)

Properties

LossFunction

A custom loss.

Applies to