TimeSeriesCatalog.LocalizeRootCause Method
Definition
Important
Some information relates to prerelease product that may be substantially modified before it’s released. Microsoft makes no warranties, express or implied, with respect to the information provided here.
Create RootCause, which localizes root causes using decision tree algorithm.
public static Microsoft.ML.TimeSeries.RootCause LocalizeRootCause (this Microsoft.ML.AnomalyDetectionCatalog catalog, Microsoft.ML.TimeSeries.RootCauseLocalizationInput src, double beta = 0.3, double rootCauseThreshold = 0.95);
static member LocalizeRootCause : Microsoft.ML.AnomalyDetectionCatalog * Microsoft.ML.TimeSeries.RootCauseLocalizationInput * double * double -> Microsoft.ML.TimeSeries.RootCause
<Extension()>
Public Function LocalizeRootCause (catalog As AnomalyDetectionCatalog, src As RootCauseLocalizationInput, Optional beta As Double = 0.3, Optional rootCauseThreshold As Double = 0.95) As RootCause
Parameters
- catalog
- AnomalyDetectionCatalog
The anomaly detection catalog.
Root cause's input. The data is an instance of RootCauseLocalizationInput.
- beta
- Double
Beta is a weight parameter for user to choose. It is used when score is calculated for each root cause item. The range of beta should be in [0,1]. For a larger beta, root cause items which have a large difference between value and expected value will get a high score. For a small beta, root cause items which have a high relative change will get a low score.
- rootCauseThreshold
- Double
A threshold to determine whether the point should be root cause. The range of this threshold should be in [0,1]. If the point's delta is equal to or larger than rootCauseThreshold multiplied by anomaly dimension point's delta, this point is treated as a root cause. Different threshold will turn out different results. Users can choose the delta according to their data and requirments.
Returns
Examples
using System;
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.TimeSeries;
namespace Samples.Dynamic
{
public static class LocalizeRootCause
{
// In the root cause detection input, this string identifies an aggregation as opposed to a dimension value"
private static string AGG_SYMBOL = "##SUM##";
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var mlContext = new MLContext();
// Create an root cause localization input instance.
DateTime timestamp = GetTimestamp();
var data = new RootCauseLocalizationInput(timestamp, GetAnomalyDimension(), new List<MetricSlice>() { new MetricSlice(timestamp, GetPoints()) }, AggregateType.Sum, AGG_SYMBOL);
// Get the root cause localization result.
RootCause prediction = mlContext.AnomalyDetection.LocalizeRootCause(data);
// Print the localization result.
int count = 0;
foreach (RootCauseItem item in prediction.Items)
{
count++;
Console.WriteLine($"Root cause item #{count} ...");
Console.WriteLine($"Score: {item.Score}, Path: {String.Join(" ", item.Path)}, Direction: {item.Direction}, Dimension:{String.Join(" ", item.Dimension)}");
}
//Item #1 ...
//Score: 0.26670448876705927, Path: DataCenter, Direction: Up, Dimension:[Country, UK] [DeviceType, ##SUM##] [DataCenter, DC1]
}
private static List<TimeSeriesPoint> GetPoints()
{
List<TimeSeriesPoint> points = new List<TimeSeriesPoint>();
Dictionary<string, Object> dic1 = new Dictionary<string, Object>();
dic1.Add("Country", "UK");
dic1.Add("DeviceType", "Laptop");
dic1.Add("DataCenter", "DC1");
points.Add(new TimeSeriesPoint(200, 100, true, dic1));
Dictionary<string, Object> dic2 = new Dictionary<string, Object>();
dic2.Add("Country", "UK");
dic2.Add("DeviceType", "Mobile");
dic2.Add("DataCenter", "DC1");
points.Add(new TimeSeriesPoint(1000, 100, true, dic2));
Dictionary<string, Object> dic3 = new Dictionary<string, Object>();
dic3.Add("Country", "UK");
dic3.Add("DeviceType", AGG_SYMBOL);
dic3.Add("DataCenter", "DC1");
points.Add(new TimeSeriesPoint(1200, 200, true, dic3));
Dictionary<string, Object> dic4 = new Dictionary<string, Object>();
dic4.Add("Country", "UK");
dic4.Add("DeviceType", "Laptop");
dic4.Add("DataCenter", "DC2");
points.Add(new TimeSeriesPoint(100, 100, false, dic4));
Dictionary<string, Object> dic5 = new Dictionary<string, Object>();
dic5.Add("Country", "UK");
dic5.Add("DeviceType", "Mobile");
dic5.Add("DataCenter", "DC2");
points.Add(new TimeSeriesPoint(200, 200, false, dic5));
Dictionary<string, Object> dic6 = new Dictionary<string, Object>();
dic6.Add("Country", "UK");
dic6.Add("DeviceType", AGG_SYMBOL);
dic6.Add("DataCenter", "DC2");
points.Add(new TimeSeriesPoint(300, 300, false, dic6));
Dictionary<string, Object> dic7 = new Dictionary<string, Object>();
dic7.Add("Country", "UK");
dic7.Add("DeviceType", AGG_SYMBOL);
dic7.Add("DataCenter", AGG_SYMBOL);
points.Add(new TimeSeriesPoint(1500, 500, true, dic7));
Dictionary<string, Object> dic8 = new Dictionary<string, Object>();
dic8.Add("Country", "UK");
dic8.Add("DeviceType", "Laptop");
dic8.Add("DataCenter", AGG_SYMBOL);
points.Add(new TimeSeriesPoint(300, 200, true, dic8));
Dictionary<string, Object> dic9 = new Dictionary<string, Object>();
dic9.Add("Country", "UK");
dic9.Add("DeviceType", "Mobile");
dic9.Add("DataCenter", AGG_SYMBOL);
points.Add(new TimeSeriesPoint(1200, 300, true, dic9));
return points;
}
private static Dictionary<string, Object> GetAnomalyDimension()
{
Dictionary<string, Object> dim = new Dictionary<string, Object>();
dim.Add("Country", "UK");
dim.Add("DeviceType", AGG_SYMBOL);
dim.Add("DataCenter", AGG_SYMBOL);
return dim;
}
private static DateTime GetTimestamp()
{
return new DateTime(2020, 3, 23, 0, 0, 0);
}
}
}