Share via


TextCatalog.ProduceNgrams Method

Definition

Creates a NgramExtractingEstimator which produces a vector of counts of n-grams (sequences of consecutive words) encountered in the input text.

public static Microsoft.ML.Transforms.Text.NgramExtractingEstimator ProduceNgrams (this Microsoft.ML.TransformsCatalog.TextTransforms catalog, string outputColumnName, string inputColumnName = default, int ngramLength = 2, int skipLength = 0, bool useAllLengths = true, int maximumNgramsCount = 10000000, Microsoft.ML.Transforms.Text.NgramExtractingEstimator.WeightingCriteria weighting = Microsoft.ML.Transforms.Text.NgramExtractingEstimator+WeightingCriteria.Tf);
static member ProduceNgrams : Microsoft.ML.TransformsCatalog.TextTransforms * string * string * int * int * bool * int * Microsoft.ML.Transforms.Text.NgramExtractingEstimator.WeightingCriteria -> Microsoft.ML.Transforms.Text.NgramExtractingEstimator
<Extension()>
Public Function ProduceNgrams (catalog As TransformsCatalog.TextTransforms, outputColumnName As String, Optional inputColumnName As String = Nothing, Optional ngramLength As Integer = 2, Optional skipLength As Integer = 0, Optional useAllLengths As Boolean = true, Optional maximumNgramsCount As Integer = 10000000, Optional weighting As NgramExtractingEstimator.WeightingCriteria = Microsoft.ML.Transforms.Text.NgramExtractingEstimator+WeightingCriteria.Tf) As NgramExtractingEstimator

Parameters

catalog
TransformsCatalog.TextTransforms

The text-related transform's catalog.

outputColumnName
String

Name of the column resulting from the transformation of inputColumnName. This column's data type will be a vector of Single.

inputColumnName
String

Name of the column to transform. If set to null, the value of the outputColumnName will be used as source. This estimator operates over vectors of keys data type.

ngramLength
Int32

Ngram length.

skipLength
Int32

Number of tokens to skip between each n-gram. By default no token is skipped.

useAllLengths
Boolean

Whether to include all n-gram lengths up to ngramLength or only ngramLength.

maximumNgramsCount
Int32

Maximum number of n-grams to store in the dictionary.

weighting
NgramExtractingEstimator.WeightingCriteria

Statistical measure used to evaluate how important a word or n-gram is to a document in a corpus. When maximumNgramsCount is smaller than the total number of encountered n-grams this measure is used to determine which n-grams to keep.

Returns

Examples

using System;
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Transforms.Text;

namespace Samples.Dynamic
{
    public static class ProduceNgrams
    {
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var mlContext = new MLContext();

            // Create a small dataset as an IEnumerable.
            var samples = new List<TextData>()
            {
                new TextData(){ Text = "This is an example to compute n-grams." },
                new TextData(){ Text = "N-gram is a sequence of 'N' consecutive " +
                    "words/tokens." },

                new TextData(){ Text = "ML.NET's ProduceNgrams API produces " +
                    "vector of n-grams." },

                new TextData(){ Text = "Each position in the vector corresponds " +
                    "to a particular n-gram." },

                new TextData(){ Text = "The value at each position corresponds " +
                    "to," },

                new TextData(){ Text = "the number of times n-gram occurred in " +
                    "the data (Tf), or" },

                new TextData(){ Text = "the inverse of the number of documents " +
                    "that contain the n-gram (Idf)," },

                new TextData(){ Text = "or compute both and multiply together " +
                    "(Tf-Idf)." },
            };

            // Convert training data to IDataView.
            var dataview = mlContext.Data.LoadFromEnumerable(samples);

            // A pipeline for converting text into numeric n-gram features.
            // The following call to 'ProduceNgrams' requires the tokenized
            // text /string as input. This is achieved by calling 
            // 'TokenizeIntoWords' first followed by 'ProduceNgrams'. Please note
            // that the length of the output feature vector depends on the n-gram
            // settings.
            var textPipeline = mlContext.Transforms.Text.TokenizeIntoWords("Tokens",
                "Text")
                // 'ProduceNgrams' takes key type as input. Converting the tokens
                // into key type using 'MapValueToKey'.
                .Append(mlContext.Transforms.Conversion.MapValueToKey("Tokens"))
                .Append(mlContext.Transforms.Text.ProduceNgrams("NgramFeatures",
                    "Tokens",
                    ngramLength: 3,
                    useAllLengths: false,
                    weighting: NgramExtractingEstimator.WeightingCriteria.Tf));

            // Fit to data.
            var textTransformer = textPipeline.Fit(dataview);
            var transformedDataView = textTransformer.Transform(dataview);

            // Create the prediction engine to get the n-gram features extracted
            // from the text.
            var predictionEngine = mlContext.Model.CreatePredictionEngine<TextData,
                TransformedTextData>(textTransformer);

            // Convert the text into numeric features.
            var prediction = predictionEngine.Predict(samples[0]);

            // Print the length of the feature vector.
            Console.WriteLine("Number of Features: " + prediction.NgramFeatures
                .Length);

            // Preview of the produced n-grams.
            // Get the slot names from the column's metadata.
            // The slot names for a vector column corresponds to the names
            // associated with each position in the vector.
            VBuffer<ReadOnlyMemory<char>> slotNames = default;
            transformedDataView.Schema["NgramFeatures"].GetSlotNames(ref slotNames);
            var NgramFeaturesColumn = transformedDataView.GetColumn<VBuffer<
                float>>(transformedDataView.Schema["NgramFeatures"]);
            var slots = slotNames.GetValues();
            Console.Write("N-grams: ");
            foreach (var featureRow in NgramFeaturesColumn)
            {
                foreach (var item in featureRow.Items())
                    Console.Write($"{slots[item.Key]}  ");
                Console.WriteLine();
            }

            // Print the first 10 feature values.
            Console.Write("Features: ");
            for (int i = 0; i < 10; i++)
                Console.Write($"{prediction.NgramFeatures[i]:F4}  ");

            //  Expected output:
            //   Number of Features: 52
            //   N-grams:   This|is|an  is|an|example  an|example|to  example|to|compute  to|compute|n-grams.  N-gram|is|a  is|a|sequence  a|sequence|of  sequence|of|'N'  of|'N'|consecutive  ...
            //   Features:     1.0000      1.0000          1.0000           1.0000             1.0000            0.0000      0.0000          0.0000          0.0000          0.0000          ...
        }

        private class TextData
        {
            public string Text { get; set; }
        }

        private class TransformedTextData : TextData
        {
            public float[] NgramFeatures { get; set; }
        }
    }
}

Applies to