MulticlassClassificationMetrics.PerClassLogLoss Property
Definition
Important
Some information relates to prerelease product that may be substantially modified before it’s released. Microsoft makes no warranties, express or implied, with respect to the information provided here.
Gets the log-loss of the classifier for each class. Log-loss measures the performance of a classifier with respect to how much the predicted probabilities diverge from the true class label. Lower log-loss indicates a better model. A perfect model, which predicts a probability of 1 for the true class, will have a log-loss of 0.
public System.Collections.Generic.IReadOnlyList<double> PerClassLogLoss { get; }
member this.PerClassLogLoss : System.Collections.Generic.IReadOnlyList<double>
Public ReadOnly Property PerClassLogLoss As IReadOnlyList(Of Double)
Property Value
Examples
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic
{
public static class LogLossPerClass
{
public static void Example()
{
// Create a new context for ML.NET operations. It can be used for
// exception tracking and logging, as a catalog of available operations
// and as the source of randomness. Setting the seed to a fixed number
// in this example to make outputs deterministic.
var mlContext = new MLContext(seed: 0);
// Create a list of training data points.
var dataPoints = GenerateRandomDataPoints(1000);
// Convert the list of data points to an IDataView object, which is
// consumable by ML.NET API.
var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);
// Define the trainer.
var pipeline =
// Convert the string labels into key types.
mlContext.Transforms.Conversion
.MapValueToKey(nameof(DataPoint.Label))
// Apply a multiclass trainer.
.Append(mlContext.MulticlassClassification.Trainers
.LightGbm());
// Train the model.
var model = pipeline.Fit(trainingData);
// Create testing data. Use different random seed to make it different
// from training data.
var testData = mlContext.Data
.LoadFromEnumerable(GenerateRandomDataPoints(500, seed: 123));
// Run the model on test data set.
var transformedTestData = model.Transform(testData);
// Evaluate the overall metrics
var metrics = mlContext.MulticlassClassification
.Evaluate(transformedTestData);
// Find the original label values.
VBuffer<uint> keys = default;
transformedTestData.Schema["PredictedLabel"].GetKeyValues(ref keys);
var originalLabels = keys.DenseValues().ToArray();
for (var i = 0; i < originalLabels.Length; i++)
Console.WriteLine($"LogLoss for label " +
$"{originalLabels[i]}: {metrics.PerClassLogLoss[i]:F4}");
// Expected output:
// LogLoss for label 7: 0.2578
// LogLoss for label 8: 0.2504
// LogLoss for label 2: 0.1121
// LogLoss for label 9: 0.2229
// LogLoss for label 6: 0.1737
// LogLoss for label 1: 0.2645
// LogLoss for label 3: 0.2235
// LogLoss for label 5: 0.1128
// LogLoss for label 4: 0.1442
}
// Generates data points with random features and labels 1 to 9.
private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
int seed = 0)
{
var random = new Random(seed);
float randomFloat() => (float)(random.NextDouble() - 0.5);
for (int i = 0; i < count; i++)
{
// Generate Labels that are integers 1, 2 or 3
var label = random.Next(1, 10);
yield return new DataPoint
{
Label = (uint)label,
// Create random features that are correlated with the label.
// The feature values are slightly increased by adding a
// constant multiple of label.
Features = Enumerable.Repeat(label, 20)
.Select(x => randomFloat() + label * 0.2f).ToArray()
};
}
}
// Example with label and 20 feature values. A data set is a collection of
// such examples.
private class DataPoint
{
public uint Label { get; set; }
[VectorType(20)]
public float[] Features { get; set; }
}
// Class used to capture predictions.
private class Prediction
{
// Original label.
public uint Label { get; set; }
// Predicted label from the trainer.
public uint PredictedLabel { get; set; }
}
}
}
Remarks
The log-loss metric is computed as $-\frac{1}{m} \sum_{i=1}^m \log(p_i)$, where $m$ is the number of instances in the test set. $p_i$ is the probability returned by the classifier if the instance belongs to the class, and 1 minus the probability returned by the classifier if the instance does not belong to the class.