FieldAwareFactorizationMachine(BinaryClassificationCatalog+BinaryClassificationTrainers, FieldAwareFactorizationMachineTrainer+Options)
|
Create FieldAwareFactorizationMachineTrainer using advanced options, which predicts a target using a field-aware factorization machine trained over boolean label data.
|
FieldAwareFactorizationMachine(BinaryClassificationCatalog+BinaryClassificationTrainers, String, String, String)
|
Create FieldAwareFactorizationMachineTrainer, which predicts a target using a field-aware factorization machine trained over boolean label data.
|
FieldAwareFactorizationMachine(BinaryClassificationCatalog+BinaryClassificationTrainers, String[], String, String)
|
Create FieldAwareFactorizationMachineTrainer, which predicts a target using a field-aware factorization machine trained over boolean label data.
|
LightGbm(BinaryClassificationCatalog+BinaryClassificationTrainers, LightGbmBinaryTrainer+Options)
|
Create LightGbmBinaryTrainer with advanced options, which predicts a target using a gradient boosting decision tree binary classification.
|
LightGbm(BinaryClassificationCatalog+BinaryClassificationTrainers, Stream, String)
|
Create LightGbmBinaryTrainer from a pre-trained LightGBM model, which predicts a target using a gradient boosting decision tree binary classification.
|
LightGbm(BinaryClassificationCatalog+BinaryClassificationTrainers, String, String, String, Nullable<Int32>, Nullable<Int32>, Nullable<Double>, Int32)
|
Create LightGbmBinaryTrainer, which predicts a target using a gradient boosting decision tree binary classification.
|
SymbolicSgdLogisticRegression(BinaryClassificationCatalog+BinaryClassificationTrainers, SymbolicSgdLogisticRegressionBinaryTrainer+Options)
|
Create SymbolicSgdLogisticRegressionBinaryTrainer with advanced options, which predicts a target using a linear binary classification model trained over boolean label data.
Stochastic gradient descent (SGD) is an iterative algorithm that optimizes a differentiable objective function.
The SymbolicSgdLogisticRegressionBinaryTrainer parallelizes SGD using symbolic execution.
|
SymbolicSgdLogisticRegression(BinaryClassificationCatalog+BinaryClassificationTrainers, String, String, Int32)
|
Create SymbolicSgdLogisticRegressionBinaryTrainer, which predicts a target using a linear binary classification model trained over boolean label data.
Stochastic gradient descent (SGD) is an iterative algorithm that optimizes a differentiable objective function.
The SymbolicSgdLogisticRegressionBinaryTrainer parallelizes SGD using symbolic execution.
|
AveragedPerceptron(BinaryClassificationCatalog+BinaryClassificationTrainers, AveragedPerceptronTrainer+Options)
|
Create an AveragedPerceptronTrainer with advanced options, which predicts a target using a linear binary classification model trained over boolean label data.
|
AveragedPerceptron(BinaryClassificationCatalog+BinaryClassificationTrainers, String, String, IClassificationLoss, Single, Boolean, Single, Int32)
|
Create an AveragedPerceptronTrainer, which predicts a target using a linear binary classification model trained over boolean label data.
|
LbfgsLogisticRegression(BinaryClassificationCatalog+BinaryClassificationTrainers, LbfgsLogisticRegressionBinaryTrainer+Options)
|
Create LbfgsLogisticRegressionBinaryTrainer with advanced options, which predicts a target using a linear binary classification model trained over boolean label data.
|
LbfgsLogisticRegression(BinaryClassificationCatalog+BinaryClassificationTrainers, String, String, String, Single, Single, Single, Int32, Boolean)
|
Create LbfgsLogisticRegressionBinaryTrainer, which predicts a target using a linear binary classification model trained over boolean label data.
|
LdSvm(BinaryClassificationCatalog+BinaryClassificationTrainers, LdSvmTrainer+Options)
|
Create LdSvmTrainer with advanced options, which predicts a target using a Local Deep SVM model.
|
LdSvm(BinaryClassificationCatalog+BinaryClassificationTrainers, String, String, String, Int32, Int32, Boolean, Boolean)
|
Create LdSvmTrainer, which predicts a target using a Local Deep SVM model.
|
LinearSvm(BinaryClassificationCatalog+BinaryClassificationTrainers, LinearSvmTrainer+Options)
|
Create LinearSvmTrainer with advanced options, which predicts a target using a linear binary classification model
trained over boolean label data.
|
LinearSvm(BinaryClassificationCatalog+BinaryClassificationTrainers, String, String, String, Int32)
|
Create LinearSvmTrainer, which predicts a target using a linear binary classification model trained
over boolean label data.
|
Prior(BinaryClassificationCatalog+BinaryClassificationTrainers, String, String)
|
Create PriorTrainer, which predicts a target using a binary classification model.
|
SdcaLogisticRegression(BinaryClassificationCatalog+BinaryClassificationTrainers, SdcaLogisticRegressionBinaryTrainer+Options)
|
Create SdcaLogisticRegressionBinaryTrainer with advanced options, which predicts a target using a linear classification model.
|
SdcaLogisticRegression(BinaryClassificationCatalog+BinaryClassificationTrainers,
String, String, String, Nullable<Single>, Nullable<Single>, Nullable<Int32>)
|
Create SdcaLogisticRegressionBinaryTrainer, which predicts a target using a linear classification model.
|
SdcaNonCalibrated(BinaryClassificationCatalog+BinaryClassificationTrainers, SdcaNonCalibratedBinaryTrainer+Options)
|
Create SdcaNonCalibratedBinaryTrainer with advanced options, which predicts a target using a linear classification model trained over boolean label data.
|
SdcaNonCalibrated(BinaryClassificationCatalog+BinaryClassificationTrainers,
String, String, String, ISupportSdcaClassificationLoss, Nullable<Single>,
Nullable<Single>, Nullable<Int32>)
|
Create SdcaNonCalibratedBinaryTrainer, which predicts a target using a linear classification model.
|
SgdCalibrated(BinaryClassificationCatalog+BinaryClassificationTrainers, SgdCalibratedTrainer+Options)
|
Create SgdCalibratedTrainer with advanced options, which predicts a target using a linear classification model.
Stochastic gradient descent (SGD) is an iterative algorithm that optimizes a differentiable objective function.
|
SgdCalibrated(BinaryClassificationCatalog+BinaryClassificationTrainers, String, String, String, Int32, Double, Single)
|
Create SgdCalibratedTrainer, which predicts a target using a linear classification model.
Stochastic gradient descent (SGD) is an iterative algorithm that optimizes a differentiable objective function.
|
SgdNonCalibrated(BinaryClassificationCatalog+BinaryClassificationTrainers, SgdNonCalibratedTrainer+Options)
|
Create SgdNonCalibratedTrainer with advanced options, which predicts a target using a linear classification model.
Stochastic gradient descent (SGD) is an iterative algorithm that optimizes a differentiable objective function.
|
SgdNonCalibrated(BinaryClassificationCatalog+BinaryClassificationTrainers, String, String, String, IClassificationLoss, Int32, Double, Single)
|
Create SgdNonCalibratedTrainer, which predicts a target using a linear classification model.
Stochastic gradient descent (SGD) is an iterative algorithm that optimizes a differentiable objective function.
|
FastForest(BinaryClassificationCatalog+BinaryClassificationTrainers, FastForestBinaryTrainer+Options)
|
Create FastForestBinaryTrainer with advanced options, which predicts a target using a decision tree regression model.
|
FastForest(BinaryClassificationCatalog+BinaryClassificationTrainers, String, String, String, Int32, Int32, Int32)
|
Create FastForestBinaryTrainer, which predicts a target using a decision tree regression model.
|
FastTree(BinaryClassificationCatalog+BinaryClassificationTrainers, FastTreeBinaryTrainer+Options)
|
Create FastTreeBinaryTrainer with advanced options, which predicts a target using a decision tree binary classification model.
|
FastTree(BinaryClassificationCatalog+BinaryClassificationTrainers, String, String, String, Int32, Int32, Int32, Double)
|
Create FastTreeBinaryTrainer, which predicts a target using a decision tree binary classification model.
|
Gam(BinaryClassificationCatalog+BinaryClassificationTrainers, GamBinaryTrainer+Options)
|
Create GamBinaryTrainer using advanced options, which predicts a target using generalized additive models (GAM).
|
Gam(BinaryClassificationCatalog+BinaryClassificationTrainers, String, String, String, Int32, Int32, Double)
|
Create GamBinaryTrainer, which predicts a target using generalized additive models (GAM).
|