az ml batch-endpoint
Note
This reference is part of the ml extension for the Azure CLI (version 2.15.0 or higher). The extension will automatically install the first time you run an az ml batch-endpoint command. Learn more about extensions.
Manage Azure ML batch endpoints.
Azure ML endpoints provide a simple interface for creating and managing model deployments. Each endpoint can have one or more deployments. Batch endpoints are used for offline batch scoring.
Commands
Name | Description | Type | Status |
---|---|---|---|
az ml batch-endpoint create |
Create an endpoint. |
Extension | GA |
az ml batch-endpoint delete |
Delete an endpoint. |
Extension | GA |
az ml batch-endpoint invoke |
Invoke an endpoint. |
Extension | GA |
az ml batch-endpoint list |
List endpoints in a workspace. |
Extension | GA |
az ml batch-endpoint list-jobs |
List the batch scoring jobs for a batch endpoint. |
Extension | GA |
az ml batch-endpoint show |
Show details for an endpoint. |
Extension | GA |
az ml batch-endpoint update |
Update an endpoint. |
Extension | GA |
az ml batch-endpoint create
Create an endpoint.
To create an endpoint, provide a YAML file with a batch endpoint configuration. If the endpoint already exists, it will be over-written with the new settings.
az ml batch-endpoint create --resource-group
--workspace-name
[--file]
[--name]
[--no-wait]
[--set]
Examples
Create an endpoint from a YAML specification file
az ml batch-endpoint create --file endpoint.yml --resource-group my-resource-group --workspace-name my-workspace
Create an endpoint with name
az ml batch-endpoint create --name endpointname --resource-group my-resource-group --workspace-name my-workspace
Required Parameters
Name of resource group. You can configure the default group using az configure --defaults group=<name>
.
Name of the Azure ML workspace. You can configure the default workspace using az configure --defaults workspace=<name>
.
Optional Parameters
Local path to the YAML file containing the Azure ML batch-endpoint specification. The YAML reference docs for batch-endpoint can be found at: https://aka.ms/ml-cli-v2-endpoint-batch-yaml-reference.
Name of the batch endpoint.
Do not wait for the long-running-operation to finish. Default is False.
Update an object by specifying a property path and value to set. Example: --set property1.property2=value.
Global Parameters
Increase logging verbosity to show all debug logs.
Show this help message and exit.
Only show errors, suppressing warnings.
Output format.
JMESPath query string. See http://jmespath.org/ for more information and examples.
Name or ID of subscription. You can configure the default subscription using az account set -s NAME_OR_ID
.
Increase logging verbosity. Use --debug for full debug logs.
az ml batch-endpoint delete
Delete an endpoint.
az ml batch-endpoint delete --name
--resource-group
--workspace-name
[--no-wait]
[--yes]
Examples
Delete an batch endpoint, including all its deployments
az ml batch-endpoint delete --name my-batch-endpoint --resource-group my-resource-group --workspace-name my-workspace
Required Parameters
Name of the batch endpoint.
Name of resource group. You can configure the default group using az configure --defaults group=<name>
.
Name of the Azure ML workspace. You can configure the default workspace using az configure --defaults workspace=<name>
.
Optional Parameters
Do not wait for the long-running-operation to finish. Default is False.
Do not prompt for confirmation.
Global Parameters
Increase logging verbosity to show all debug logs.
Show this help message and exit.
Only show errors, suppressing warnings.
Output format.
JMESPath query string. See http://jmespath.org/ for more information and examples.
Name or ID of subscription. You can configure the default subscription using az account set -s NAME_OR_ID
.
Increase logging verbosity. Use --debug for full debug logs.
az ml batch-endpoint invoke
Invoke an endpoint.
You can start batch inference run by invoking the endpoint with some data. For batch endpoints, invocation will trigger an asynchronous batch scoring job.
az ml batch-endpoint invoke --name
--resource-group
--workspace-name
[--deployment-name]
[--experiment-name]
[--file]
[--input]
[--input-type]
[--inputs]
[--instance-count]
[--job-name]
[--mini-batch-size]
[--output-path]
[--outputs]
[--set]
Examples
Invoke a batch endpoint with input data from a registered Azure ML data asset and override default deployment setting for mini_batch_size
az ml batch-endpoint invoke --name my-batch-endpoint --input azureml:my-dataset:1 --mini-batch-size 64 --resource-group my-resource-group --workspace-name my-workspace
Invoke a batch endpoint with input file from a public URI
az ml batch-endpoint invoke --name my-batch-endpoint --input-type uri_file --input https://pipelinedata.blob.core.windows.net/sampledata/mnist/0.png --resource-group my-resource-group --workspace-name my-workspace
Invoke a batch endpoint with input file from a registered datastore
az ml batch-endpoint invoke --name my-batch-endpoint --input-type uri_file --input azureml://datastores/workspaceblobstore/paths/{path_to_data}/mnist/0.png --resource-group my-resource-group --workspace-name my-workspace
Invoke a batch endpoint with input folder from a public URI
az ml batch-endpoint invoke --name my-batch-endpoint --input-type uri_folder --input https://pipelinedata.blob.core.windows.net/sampledata/mnist --resource-group my-resource-group --workspace-name my-workspace
Invoke a batch endpoint with input folder from a registered datastore
az ml batch-endpoint invoke --name my-batch-endpoint --input-type uri_folder --input azureml://datastores/workspaceblobstore/paths/{path_to_data}/mnist --resource-group my-resource-group --workspace-name my-workspace
Invoke a batch endpoint with files in a local folder
az ml batch-endpoint invoke --name my-batch-endpoint --input ./mnist_folder --resource-group my-resource-group --workspace-name my-workspace
Invoke a batch endpoint with a local folder as the input and output path and overwrite some batch deployment settings during endpoint invoke
az ml batch-endpoint invoke --name my-batch-endpoint --input ./mnist_folder --instance-count 2 --mini-batch-size 5 --output-path azureml://datastores/workspaceblobstore/paths/tests/output --resource-group my-resource-group --workspace-name my-workspace
Required Parameters
Name of the batch endpoint.
Name of resource group. You can configure the default group using az configure --defaults group=<name>
.
Name of the Azure ML workspace. You can configure the default workspace using az configure --defaults workspace=<name>
.
Optional Parameters
Name of the deployment to target.
Name of the experiment for pipeline component deployment.
Name of the file used for batch invoke.
Reference to input data to use for batch inferencing. It can be a path on the datastore, public URI, a registered data asset, or a local folder path.
Type of the input, specifying whether it's a file or a folder. Use this when you are using a path on datastore or public URI. Supported values: uri_folder, uri_file.
Dictionary of Inputs of invoke jobs.
Number of instances the prediction will run on.
Name of the job for batch invoke.
Size of each mini batch that the input data will be split into for prediction.
Path on the datastore where output files will be uploaded to.
Dictionary to specify where to store the results.
Update an object by specifying a property path and value to set. Example: --set property1.property2=value.
Global Parameters
Increase logging verbosity to show all debug logs.
Show this help message and exit.
Only show errors, suppressing warnings.
Output format.
JMESPath query string. See http://jmespath.org/ for more information and examples.
Name or ID of subscription. You can configure the default subscription using az account set -s NAME_OR_ID
.
Increase logging verbosity. Use --debug for full debug logs.
az ml batch-endpoint list
List endpoints in a workspace.
az ml batch-endpoint list --resource-group
--workspace-name
Examples
List all the batch endpoints in a workspace
az ml batch-endpoint list --resource-group my-resource-group --workspace-name my-workspace
List all the batch endpoints in a workspace
az ml batch-endpoint list --resource-group my-resource-group --workspace-name my-workspace
List all the batch endpoints in a workspace using --query argument to execute a JMESPath query on the results of commands.
az ml batch-endpoint list --query "[].{Name:name}" --output table --resource-group my-resource-group --workspace-name my-workspace
Required Parameters
Name of resource group. You can configure the default group using az configure --defaults group=<name>
.
Name of the Azure ML workspace. You can configure the default workspace using az configure --defaults workspace=<name>
.
Global Parameters
Increase logging verbosity to show all debug logs.
Show this help message and exit.
Only show errors, suppressing warnings.
Output format.
JMESPath query string. See http://jmespath.org/ for more information and examples.
Name or ID of subscription. You can configure the default subscription using az account set -s NAME_OR_ID
.
Increase logging verbosity. Use --debug for full debug logs.
az ml batch-endpoint list-jobs
List the batch scoring jobs for a batch endpoint.
az ml batch-endpoint list-jobs --name
--resource-group
--workspace-name
Examples
List all the batch scoring jobs for an endpoint
az ml batch-endpoint list-jobs --name my-batch-endpoint --resource-group my-resource-group --workspace-name my-workspace
Required Parameters
Name of the batch endpoint.
Name of resource group. You can configure the default group using az configure --defaults group=<name>
.
Name of the Azure ML workspace. You can configure the default workspace using az configure --defaults workspace=<name>
.
Global Parameters
Increase logging verbosity to show all debug logs.
Show this help message and exit.
Only show errors, suppressing warnings.
Output format.
JMESPath query string. See http://jmespath.org/ for more information and examples.
Name or ID of subscription. You can configure the default subscription using az account set -s NAME_OR_ID
.
Increase logging verbosity. Use --debug for full debug logs.
az ml batch-endpoint show
Show details for an endpoint.
az ml batch-endpoint show --name
--resource-group
--workspace-name
Examples
Show the details for a batch endpoint
az ml batch-endpoint show --name my-batch-endpoint --resource-group my-resource-group --workspace-name my-workspace
Show the provisioning state of an endpoint using --query argument to execute a JMESPath query on the results of commands.
az ml batch-endpoint show -n my-endpoint --query "{Name:name,State:provisioning_state}" --output table --resource-group my-resource-group --workspace-name my-workspace
Required Parameters
Name of the batch endpoint.
Name of resource group. You can configure the default group using az configure --defaults group=<name>
.
Name of the Azure ML workspace. You can configure the default workspace using az configure --defaults workspace=<name>
.
Global Parameters
Increase logging verbosity to show all debug logs.
Show this help message and exit.
Only show errors, suppressing warnings.
Output format.
JMESPath query string. See http://jmespath.org/ for more information and examples.
Name or ID of subscription. You can configure the default subscription using az account set -s NAME_OR_ID
.
Increase logging verbosity. Use --debug for full debug logs.
az ml batch-endpoint update
Update an endpoint.
The 'description', 'tags', and 'defaults' properties of an endpoint can be updated. In addition, new deployments can be added to an endpoint, and existing deployments can be updated.
az ml batch-endpoint update --resource-group
--workspace-name
[--add]
[--defaults]
[--file]
[--force-string]
[--name]
[--no-wait]
[--remove]
[--set]
Examples
Update an endpoint from a YAML specification file
az ml batch-endpoint update --name my-batch-endpoint --file updated_endpoint.yml --resource-group my-resource-group --workspace-name my-workspace
Add a new deployment to an existing endpoint
az ml batch-endpoint update --name my-batch-endpoint --set defaults.deployment_name=depname --resource-group my-resource-group --workspace-name my-workspace
Required Parameters
Name of resource group. You can configure the default group using az configure --defaults group=<name>
.
Name of the Azure ML workspace. You can configure the default workspace using az configure --defaults workspace=<name>
.
Optional Parameters
Add an object to a list of objects by specifying a path and key value pairs. Example: --add property.listProperty <key=value, string or JSON string>
.
Update deployment_name inside defaults settings for endpoint invoke.
Local path to the YAML file containing the Azure ML batch-endpoint specification. The YAML reference docs for batch-endpoint can be found at: https://aka.ms/ml-cli-v2-endpoint-batch-yaml-reference.
When using 'set' or 'add', preserve string literals instead of attempting to convert to JSON.
Name of the batch endpoint.
Do not wait for the long-running-operation to finish. Default is False.
Remove a property or an element from a list. Example: --remove property.list <indexToRemove>
OR --remove propertyToRemove
.
Update an object by specifying a property path and value to set. Example: --set property1.property2=<value>
.
Global Parameters
Increase logging verbosity to show all debug logs.
Show this help message and exit.
Only show errors, suppressing warnings.
Output format.
JMESPath query string. See http://jmespath.org/ for more information and examples.
Name or ID of subscription. You can configure the default subscription using az account set -s NAME_OR_ID
.
Increase logging verbosity. Use --debug for full debug logs.