IDENTIFIER clause
Applies to: Databricks SQL Databricks Runtime 13.3 LTS and above
The IDENTIFIER clause interprets a constant string as a:
- table or view name
- function name
- column name
- field name
- schema name
- catalog name
The clause enables SQL injection safe parameterization of SQL statements.
The IDENTIFIER clause is supported for the following statements:
- Table, view, or function name of a CREATE, ALTER, DROP, UNDROP
- Table name of a MERGE, UPDATE, DELETE, INSERT, COPY INTO
- Target of a SHOW or DESCRIBE
- USE of a schema
- A function invocation
- A column or view referenced in a query. This includes queries embedded in a DDL or DML statement.
Applies to: Databricks Runtime 13.3 LTS and above
- USE of a catalog
When using the identifier clause it may not be embedded within an identifier.
Syntax
IDENTIFIER ( strExpr )
Parameters
- strExpr: A constant
STRING
expression typically including one or more parameter markers.
Examples
Scala
// Creation of a table using parameter marker.
spark.sql("CREATE TABLE IDENTIFIER(:mytab)(c1 INT)", args = Map("mytab" -> "tab1"))
// Altering a table with a fixed schema and a parameterized table name.
spark.sql("ALTER TABLE IDENTIFIER('default.' || :mytab) ADD COLUMN c2 INT)", args = Map("mytab" -> "tab1"))
// Dropping a table with separate schema and table parameters.
spark.sql("DROP TABLE IDENTIFIER(:myschema || '.' || :mytab)", args = Map("mySchema" -> "default", "mytab" -> "tab1"))
// A parameterized reference to a table in a query. The table name is qualified and uses back-ticks.
spark.sql("SELECT * FROM IDENTIFIER(:mytab)", args = Map("mytab" -> "`default`.`tab1`"))
// You cannot qualify the IDENTIFIER claue or use it as a qualifier itself.
spark.sql("SELECT * FROM myschema.IDENTIFIER(:mytab)", args = Map("mytab" -> "`tab1`"))
spark.sql("SELECT * FROM IDENTIFIER(:myschema).mytab", args = Map("mychema" -> "`default`"))
// A parameterized column reference
spark.sql("SELECT IDENTIFIER(:col) FROM VALUES(1) AS T(c1)", args = Map("col" -> "t.c1"))
// Passing in an aggregate function name as a parameter
spark.sql("SELECT IDENTIFIER(:agg)(c1) FROM VALUES(1), (2) AS T(c1)", args = Map("agg" -> "max"))
SQL
-- Using a catalog using a variable.
> DECLARE mycat = 'main';
> USE CATALOG IDENTIFIER(mycat);
-- Creation of a table using variable.
> DECLARE mytab = 'tab1';
> CREATE TABLE IDENTIFIER(mytab)(c1 INT);
-- Altering a table with a fixed schema and a parameterized table name.
> ALTER TABLE IDENTIFIER('default.' || mytab) ADD COLUMN c2 INT;
-- Inserting using a parameterized table name. The table name is qualified and uses back-ticks.
> SET VAR mytab = '`default`.`tab1`';
> INSERT INTO IDENTIFIER(mytab) VALUES(1, 2);
-- A parameterized reference to a table in a query.
> SELECT * FROM IDENTIFIER(mytab);
1 2
-- Dropping a table with separate schema and table parameters.
> DECLARE myschema = 'default';
> SET VAR mytab = 'tab1';
> DROP TABLE IDENTIFIER(myschema || '.' || mytab);
-- You cannot qualify the IDENTIFIER claue or use it as a qualifier itself.
> SELECT * FROM myschema.IDENTIFIER('tab');
Error: PARSE_SYNTAX_ERROR
> SELECT * FROM IDENTIFIER('default').mytab;
Error: PARSE_SYNTAX_ERROR
-- A parameterized column reference
> DECLARE col = 't.c1';
> SELECT IDENTIFIER(col) FROM VALUES(1) AS T(c1);
1
-- Passing in an aggregate function name as a parameter
> DECLARE agg = 'max';
> SELECT IDENTIFIER(agg)(c1) FROM VALUES(1), (2) AS T(c1);
2