from_json
function
Applies to: Databricks SQL Databricks Runtime
Returns a struct value with the jsonStr
and schema
.
Syntax
from_json(jsonStr, schema [, options])
Arguments
jsonStr
: ASTRING
expression specifying a json document.schema
: ASTRING
expression or invocation of schema_of_json function.options
: An optionalMAP<STRING,STRING>
literal specifying directives.
jsonStr
should be well-formed with respect to schema
and options
.
schema
must be defined as comma-separated column names and data type pairs, similar to the format used in CREATE TABLE
.
Prior to Databricks Runtime 12.2 schema
must be a literal.
Note
The column and field names in schema
are case-sensitive and must match the names in jsonStr
exactly.
To map JSON fields which differ only in case, you can cast the resulting struct to distinct field names.
See Examples for more details.
options
, if provided, can be any of the following:
primitivesAsString
(defaultfalse
): infers all primitive values as a string type.prefersDecimal
(defaultfalse
): infers all floating-point values as a decimal type. If the values do not fit in decimal, then it infers them as doubles.allowComments
(defaultfalse
): ignores Java and C++ style comment in JSON records.allowUnquotedFieldNames
(defaultfalse
): allows unquoted JSON field names.allowSingleQuotes
(defaulttrue
): allows single quotes in addition to double quotes.allowNumericLeadingZeros
(defaultfalse
): allows leading zeros in numbers (for example,00012
).allowBackslashEscapingAnyCharacter
(defaultfalse
): allows accepting quoting of all character using backslash quoting mechanism.allowUnquotedControlChars
(defaultfalse
): allows JSON Strings to contain unquoted control characters (ASCII characters with value less than 32, including tab and line feed characters) or not.mode
(defaultPERMISSIVE
): allows a mode for dealing with corrupt records during parsing.PERMISSIVE
: when it meets a corrupted record, puts the malformed string into a field configured bycolumnNameOfCorruptRecord
, and sets malformed fields to null. To keep corrupt records, you can set a string type field namedcolumnNameOfCorruptRecord
in an user-defined schema. If a schema does not have the field, it drops corrupt records during parsing. When inferring a schema, it implicitly adds acolumnNameOfCorruptRecord
field in an output schema.FAILFAST
: throws an exception when it meets corrupted records.
columnNameOfCorruptRecord
(default is the value specified inspark.sql.columnNameOfCorruptRecord
): allows renaming the new field having malformed string created byPERMISSIVE
mode. This overridesspark.sql.columnNameOfCorruptRecord
.dateFormat
(defaultyyyy-MM-dd
): sets the string that indicates a date format. Custom date formats follow the formats at Datetime patterns. This applies to date type.timestampFormat
(defaultyyyy-MM-dd'T'HH:mm:ss[.SSS][XXX]
): sets the string that indicates a timestamp format. Custom date formats follow the formats at Datetime patterns. This applies to timestamp type.multiLine
(defaultfalse
): parses one record, which may span multiple lines, per file.encoding
(by default it is not set): allows to forcibly set one of standard basic or extended encoding for the JSON files. For example UTF-16BE, UTF-32LE. If the encoding is not specified andmultiLine
is set totrue
, it is detected automatically.lineSep
(default covers all\r
,\r\n
and\n
): defines the line separator that should be used for parsing.samplingRatio
(default 1.0): defines fraction of input JSON objects used for schema inferring.dropFieldIfAllNull
(defaultfalse
): whether to ignore column of all null values or empty array/struct during schema inference.locale
(default isen-US
):sets
a locale as language tag in IETF BCP 47 format. For instance, this is used while parsing dates and timestamps.allowNonNumericNumbers
(defaulttrue
): allows JSON parser to recognize set of not-a-number (NaN
) tokens as legal floating number values:+INF
for positive infinity, as well as alias of+Infinity
andInfinity
.-INF
for negative infinity), alias-Infinity
.NaN
for other not-a-numbers, like result of division by zero.
readerCaseSensitive
(defaulttrue
): specifies the case sensitivity behavior whenrescuedDataColumn
is enabled. If true, rescue the data columns whose names differ by case from the schema; otherwise, read the data in a case-insensitive manner. Available in Databricks SQL and Databricks Runtime 13.3 LTS and above.
Returns
A struct with field names and types matching the schema definition.
Examples
> SELECT from_json('{"a":1, "b":0.8}', 'a INT, b DOUBLE');
{"a":1,"b":0.8}
-- The column name must to match the case of the JSON field
> SELECT from_json('{"a":1}', 'A INT');
{"A":null}
> SELECT from_json('{"datetime":"26/08/2015"}', 'datetime Timestamp', map('timestampFormat', 'dd/MM/yyyy'));
{"datetime":2015-08-26 00:00:00}
-- Disambiguate field names with different cases
> SELECT cast(from_json('{"a":1, "A":0.8}', 'a INT, A DOUBLE') AS STRUCT<a: INT, b: DOUBLE>);
{"a":1, "b":0.8}