Azure OpenAI Service quotas and limits
This article contains a quick reference and a detailed description of the quotas and limits for Azure OpenAI in Azure AI services.
Quotas and limits reference
The following sections provide you with a quick guide to the default quotas and limits that apply to Azure OpenAI:
Limit Name | Limit Value |
---|---|
OpenAI resources per region per Azure subscription | 30 |
Default DALL-E 2 quota limits | 2 concurrent requests |
Default DALL-E 3 quota limits | 2 capacity units (6 requests per minute) |
Default Whisper quota limits | 3 requests per minute |
Maximum prompt tokens per request | Varies per model. For more information, see Azure OpenAI Service models |
Max Standard deployments per resource | 32 |
Max fine-tuned model deployments | 5 |
Total number of training jobs per resource | 100 |
Max simultaneous running training jobs per resource | 1 |
Max training jobs queued | 20 |
Max Files per resource (fine-tuning) | 50 |
Total size of all files per resource (fine-tuning) | 1 GB |
Max training job time (job will fail if exceeded) | 720 hours |
Max training job size (tokens in training file) x (# of epochs) | 2 Billion |
Max size of all files per upload (Azure OpenAI on your data) | 16 MB |
Max number or inputs in array with /embeddings |
2048 |
Max number of /chat/completions messages |
2048 |
Max number of /chat/completions functions |
128 |
Max number of /chat completions tools |
128 |
Maximum number of Provisioned throughput units per deployment | 100,000 |
Max files per Assistant/thread | 10,000 when using the API or AI Studio. 20 when using Azure OpenAI Studio. |
Max file size for Assistants & fine-tuning | 512 MB |
Max size for all uploaded files for Assistants | 100 GB |
Assistants token limit | 2,000,000 token limit |
GPT-4o max images per request (# of images in the messages array/conversation history) | 50 |
GPT-4 vision-preview & GPT-4 turbo-2024-04-09 default max tokens |
16 Increase the max_tokens parameter value to avoid truncated responses. GPT-4o max tokens defaults to 4096. |
Max number of custom headers in API requests1 | 10 |
Max number requests per minute Current rate limits for real time audio ( gpt-4o-realtime-preview ) are defined as the number of new websocket connections per minute. For example, 6 request per minute (RPM) means 6 new connections per minute. At this time, the usage limits for gpt-4o-realtime-preview are suitable for test and development. |
6 new connections per minute |
1 Our current APIs allow up to 10 custom headers, which are passed through the pipeline, and returned. Some customers now exceed this header count resulting in HTTP 431 errors. There's no solution for this error, other than to reduce header volume. In future API versions we will no longer pass through custom headers. We recommend customers not depend on custom headers in future system architectures.
Regional quota limits
Region | o1-mini | o1 | GPT-4 | GPT-4-32K | GPT-4-Turbo | GPT-4-Turbo-V | gpt-4o | gpt-4o-mini | GPT-35-Turbo | GPT-35-Turbo-Instruct | o1-mini - GlobalStandard | o1 - GlobalStandard | gpt-4o - GlobalStandard | gpt-4o-mini - GlobalStandard | GPT-4-Turbo - GlobalStandard | GPT-4o - Global-Batch | GPT-4o-mini - Global-Batch | GPT-4 - Global-Batch | GPT-4-Turbo - Global-Batch | gpt-35-turbo - Global-Batch | Text-Embedding-Ada-002 | text-embedding-3-small | text-embedding-3-large | GPT-4o - finetune | GPT-4o-mini - finetune | GPT-4 - finetune | Babbage-002 | Babbage-002 - finetune | Davinci-002 | Davinci-002 - finetune | GPT-35-Turbo - finetune | GPT-35-Turbo-1106 - finetune | GPT-35-Turbo-0125 - finetune |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
australiaeast | - | - | 40 K | 80 K | 80 K | 30 K | - | - | 300 K | - | - | - | 30 M | 50 M | 2 M | - | - | - | - | - | 350 K | - | - | - | - | - | - | - | - | - | - | - | - |
brazilsouth | - | - | - | - | - | - | - | - | - | - | - | - | 30 M | 50 M | 2 M | - | - | - | - | - | 350 K | - | - | - | - | - | - | - | - | - | - | - | - |
canadaeast | - | - | 40 K | 80 K | 80 K | - | - | - | 300 K | - | - | - | 30 M | 50 M | 2 M | - | - | - | - | - | 350 K | 350 K | 350 K | - | - | - | - | - | - | - | - | - | - |
eastus | 1 M | 600 K | - | - | 80 K | - | 1 M | 2 M | 240 K | 240 K | 50 M | 30 M | 30 M | 50 M | 2 M | 5 B | 15 B | 150 M | 300 M | 10 B | 240 K | 350 K | 350 K | - | - | - | - | - | - | - | - | - | - |
eastus2 | 1 M | 600 K | - | - | 80 K | - | 1 M | 2 M | 300 K | - | 50 M | 30 M | 30 M | 50 M | 2 M | - | - | - | - | - | 350 K | 350 K | 350 K | 250 K | - | - | - | - | - | - | 250 K | 250 K | 250 K |
francecentral | - | - | 20 K | 60 K | 80 K | - | - | - | 240 K | - | - | - | 30 M | 50 M | 2 M | - | - | - | - | - | 240 K | - | 350 K | - | - | - | - | - | - | - | - | - | - |
germanywestcentral | - | - | - | - | - | - | - | - | - | - | - | - | 30 M | 50 M | 2 M | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
japaneast | - | - | - | - | - | 30 K | - | - | 300 K | - | - | - | 30 M | 50 M | 2 M | - | - | - | - | - | 350 K | 350 K | 350 K | - | - | - | - | - | - | - | - | - | - |
koreacentral | - | - | - | - | - | - | - | - | - | - | - | - | 30 M | 50 M | 2 M | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
northcentralus | 1 M | 600 K | - | - | 80 K | - | 1 M | 2 M | 300 K | - | 50 M | 30 M | 30 M | 50 M | 2 M | - | - | - | - | - | 350 K | - | - | 250 K | 500 K | 100 K | 240 K | 250 K | 240 K | 250 K | 250 K | 250 K | 250 K |
norwayeast | - | - | - | - | 150 K | - | - | - | - | - | - | - | 30 M | 50 M | 2 M | - | - | - | - | - | 350 K | - | 350 K | - | - | - | - | - | - | - | - | - | - |
polandcentral | - | - | - | - | - | - | - | - | - | - | - | - | 30 M | 50 M | 2 M | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
southafricanorth | - | - | - | - | - | - | - | - | - | - | - | - | 30 M | 50 M | 2 M | - | - | - | - | - | 350 K | - | - | - | - | - | - | - | - | - | - | - | - |
southcentralus | 1 M | 600 K | - | - | 80 K | - | 1 M | 2 M | 240 K | - | 50 M | 30 M | 30 M | 50 M | 2 M | - | - | - | - | - | 240 K | - | - | - | - | - | - | - | - | - | - | - | - |
southindia | - | - | - | - | 150 K | - | - | - | 300 K | - | - | - | 30 M | 50 M | 2 M | - | - | - | - | - | 350 K | - | 350 K | - | - | - | - | - | - | - | - | - | - |
spaincentral | - | - | - | - | - | - | - | - | - | - | - | - | 30 M | 50 M | 2 M | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
swedencentral | 1 M | 600 K | 40 K | 80 K | 150 K | 30 K | 1 M | 2 M | 300 K | 240 K | 50 M | 30 M | 30 M | 50 M | 2 M | 5 B | 15 B | 150 M | 300 M | 10 B | 350 K | - | 350 K | 250 K | 500 K | 100 K | 240 K | 250 K | 240 K | 250 K | 250 K | 250 K | 250 K |
switzerlandnorth | - | - | 40 K | 80 K | - | 30 K | - | - | 300 K | - | - | - | 30 M | 50 M | 2 M | - | - | - | - | - | 350 K | - | - | - | - | - | - | - | - | - | - | - | - |
switzerlandwest | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 250 K | - | 250 K | 250 K | 250 K | 250 K |
uksouth | - | - | - | - | 80 K | - | - | - | 240 K | - | - | - | 30 M | 50 M | 2 M | - | - | - | - | - | 350 K | - | 350 K | - | - | - | - | - | - | - | - | - | - |
westeurope | - | - | - | - | - | - | - | - | 240 K | - | - | - | 30 M | 50 M | 2 M | - | - | - | - | - | 240 K | - | - | - | - | - | - | - | - | - | - | - | - |
westus | 1 M | 600 K | - | - | 80 K | 30 K | 1 M | 2 M | 300 K | - | 50 M | 30 M | 30 M | 50 M | 2 M | 5 B | 15 B | 150 M | 300 M | 10 B | 350 K | - | - | - | - | - | - | - | - | - | - | - | - |
westus3 | 1 M | 600 K | - | - | 80 K | - | 1 M | 2 M | 300 K | - | 50 M | 30 M | 30 M | 50 M | 2 M | - | - | - | - | - | 350 K | - | 350 K | - | - | - | - | - | - | - | - | - | - |
Global batch limits
Limit Name | Limit Value |
---|---|
Max files per resource | 500 |
Max input file size | 200 MB |
Max requests per file | 100,000 |
Global batch quota
The table shows the batch quota limit. Quota values for global batch are represented in terms of enqueued tokens. When you submit a file for batch processing the number of tokens present in the file are counted. Until the batch job reaches a terminal state, those tokens will count against your total enqueued token limit.
Model | Enterprise agreement | Default | Monthly credit card based subscriptions | MSDN subscriptions | Azure for Students, Free Trials |
---|---|---|---|---|---|
gpt-4o |
5 B | 200 M | 50 M | 90 K | N/A |
gpt-4o-mini |
15 B | 1 B | 50 M | 90 K | N/A |
gpt-4-turbo |
300 M | 80 M | 40 M | 90 K | N/A |
gpt-4 |
150 M | 30 M | 5 M | 100 K | N/A |
gpt-35-turbo |
10 B | 1 B | 100 M | 2 M | 50 K |
B = billion | M = million | K = thousand
o1-preview & o1-mini rate limits
Important
The ratio of RPM/TPM for quota with o1-series models works differently than older chat completions models:
- Older chat models: 1 unit of capacity = 6 RPM and 1,000 TPM.
- o1-preview: 1 unit of capacity = 1 RPM and 6,000 TPM.
- o1-mini: 1 unit of capacity = 1 RPM per 10,000 TPM.
This is particularly important for programmatic model deployment as this change in RPM/TPM ratio can result in accidental under allocation of quota if one is still assuming the 1:1000 ratio followed by older chat completion models.
There is a known issue with the quota/usages API where it assumes the old ratio applies to the new o1-series models. The API returns the correct base capacity number, but does not apply the correct ratio for the accurate calculation of TPM.
o1-preview & o1-mini global standard
Model | Tier | Quota Limit in tokens per minute (TPM) | Requests per minute |
---|---|---|---|
o1-preview |
Enterprise agreement | 30 M | 5 K |
o1-mini |
Enterprise agreement | 50 M | 5 K |
o1-preview |
Default | 3 M | 500 |
o1-mini |
Default | 5 M | 500 |
o1-preview & o1-mini standard
Model | Tier | Quota Limit in tokens per minute (TPM) | Requests per minute |
---|---|---|---|
o1-preview |
Enterprise agreement | 600 K | 100 |
o1-mini |
Enterprise agreement | 1 M | 100 |
o1-preview |
Default | 300 K | 50 |
o1-mini |
Default | 500 K | 50 |
gpt-4o & GPT-4 Turbo rate limits
gpt-4o
and gpt-4o-mini
, and gpt-4
(turbo-2024-04-09
) have rate limit tiers with higher limits for certain customer types.
gpt-4o & GPT-4 Turbo global standard
Model | Tier | Quota Limit in tokens per minute (TPM) | Requests per minute |
---|---|---|---|
gpt-4o |
Enterprise agreement | 30 M | 180 K |
gpt-4o-mini |
Enterprise agreement | 50 M | 300 K |
gpt-4 (turbo-2024-04-09) |
Enterprise agreement | 2 M | 12 K |
gpt-4o |
Default | 450 K | 2.7 K |
gpt-4o-mini |
Default | 2 M | 12 K |
gpt-4 (turbo-2024-04-09) |
Default | 450 K | 2.7 K |
M = million | K = thousand
gpt-4o data zone standard
Model | Tier | Quota Limit in tokens per minute (TPM) | Requests per minute |
---|---|---|---|
gpt-4o |
Enterprise agreement | 10 M | 60 K |
gpt-4o-mini |
Enterprise agreement | 20 M | 120 K |
gpt-4o |
Default | 300 K | 1.8 K |
gpt-4o-mini |
Default | 1 M | 6 K |
M = million | K = thousand
gpt-4o standard
Model | Tier | Quota Limit in tokens per minute (TPM) | Requests per minute |
---|---|---|---|
gpt-4o |
Enterprise agreement | 1 M | 6 K |
gpt-4o-mini |
Enterprise agreement | 2 M | 12 K |
gpt-4o |
Default | 150 K | 900 |
gpt-4o-mini |
Default | 450 K | 2.7 K |
M = million | K = thousand
Usage tiers
Global standard deployments use Azure's global infrastructure, dynamically routing customer traffic to the data center with best availability for the customer’s inference requests. Similarly, Data zone standard deployments allow you to leverage Azure global infrastructure to dynamically route traffic to the data center within the Microsoft defined data zone with the best availability for each request. This enables more consistent latency for customers with low to medium levels of traffic. Customers with high sustained levels of usage might see more variability in response latency.
The Usage Limit determines the level of usage above which customers might see larger variability in response latency. A customer’s usage is defined per model and is the total tokens consumed across all deployments in all subscriptions in all regions for a given tenant.
Note
Usage tiers only apply to standard, data zone standard, and global standard deployment types. Usage tiers do not apply to global batch and provisioned throughput deployments.
GPT-4o global standard, data zone standard, & standard
Model | Usage Tiers per month |
---|---|
gpt-4o |
12 Billion tokens |
gpt-4o-mini |
85 Billion tokens |
GPT-4 standard
Model | Usage Tiers per month |
---|---|
gpt-4 + gpt-4-32k (all versions) |
6 Billion |
Other offer types
If your Azure subscription is linked to certain offer types your max quota values are lower than the values indicated in the above tables.
Tier | Quota Limit in tokens per minute (TPM) |
---|---|
Azure for Students, Free Trials | 1 K (all models) |
MSDN subscriptions | GPT 3.5 Turbo Series: 30 K GPT-4 series: 8 K |
Monthly credit card based subscriptions 1 | GPT 3.5 Turbo Series: 30 K GPT-4 series: 8 K |
1 This currently applies to offer type 0003P
In the Azure portal you can view what offer type is associated with your subscription by navigating to your subscription and checking the subscriptions overview pane. Offer type corresponds to the plan field in the subscription overview.
General best practices to remain within rate limits
To minimize issues related to rate limits, it's a good idea to use the following techniques:
- Implement retry logic in your application.
- Avoid sharp changes in the workload. Increase the workload gradually.
- Test different load increase patterns.
- Increase the quota assigned to your deployment. Move quota from another deployment, if necessary.
How to request increases to the default quotas and limits
Quota increase requests can be submitted from the Quotas page of Azure AI Studio. Due to high demand, quota increase requests are being accepted and will be filled in the order they're received. Priority is given to customers who generate traffic that consumes the existing quota allocation, and your request might be denied if this condition isn't met.
For other rate limits, submit a service request.
Next steps
Explore how to manage quota for your Azure OpenAI deployments. Learn more about the underlying models that power Azure OpenAI.