Overview

In this article we will walk you through building an application that federates the Windows Live ID. The

application makes use of a custom security token service that exposes a WS-Federation passive

endpoint (default.aspx) and also exposes a WS-Trust active endpoint (ActAslssuer.svc). The passive

endpoint federates to Windows Azure Access Control Service (ACS) and the active endpoint will

consume the bootstrap token and issue additional claims for that user.

Here is a summarized diagram of the application architecture:

@
C —1 , |3

14

¢ % Windows Live ID

Custom STS 6 ’ "‘ 5

: g A2
Claims Aware 7 L

ASPX Site =~ €————————— &— Defaultaspx J ®
12 WS-Federation "

8 s . :

T —. Windows Azure

9 WISt Access Control Service

1 10
< WS-Federation Calls (passive)
Claims Aware —————— WS-Trust Calls (active)

WCF Service

Message Flow

1. Client browser sends a HTTP GET request to a claims aware ASP.NET web application at

https://localhost/ClaimsAwareASPX/default.aspx

2. WIF intercepts that request and detects that the request does not have the proper security

token so WIF redirects the user to the configured issuer, CustomSTS, at
https://localhost/CustomSTS/default.aspx

3. The CustomSTS federates with Windows Azure ACS so the user is redirected to Windows Azure

4. Windows Azure has a relying party trust for the CustomSTS, with Windows Live ID as the identity

provider so the user is redirected to Windows Live to login for authentication

5. The user has been authenticated with Live ID and now has security token with a set of claims

added by Windows Live ID. For step five here it’s actually not a direct call from Live ID to Azure,

that implementation actually goes back to the client browser and the immediately redirected

back to Azure

10.

11.

12.

Azure accepted the security token from LivelD, performs its authorization, adds or manipulates
claims if configured and then redirects the browser back to the CustomSTS passive endpoint.
The browser presented a valid security token to our CustomSTS passive endpoint, so the
CustomSTS performs any authorization and also has an opportunity to add more or manipulate
the set of claims and then redirects the client browser back to the ASPX relying party application
but this time with an issued and trusted security token

In this step the code inside default.aspx of our ASPX relying party begins to run. Inside the
Page_Load event we attempt to call to the backend claims aware WCF service. The WIF and
W(CF configurations require the ASPX client to make a WS-Trust call to the active endpoint of our
CustomSTS to get a required security token before talking with the backend WCF service. The
ASPX page passes in the bootstrap token in that call to the CustomSTS active endpoint

The CustomSTS Active endpoint (ActAslssuer.svc) authenticates the caller using
ws2007httpbinding, does any desired authorization, and then issues a security token with a set
of claims for the bootstrap token user. Our sample adds two more claims to this list and returns
the security token back to the ASPX client

The ASPX client now has the required security token to call our backend WCF Service. The call is
made.

The WCF service method executes, it simply enumerates the set of incoming claims that are
populated by WIF using the incoming security token on the IClaimsldentity object and returns
the set of claims as a generic list

The ASPX relying party app now gets the set of claims returned from our WCF service method
and then dumps out the set of claims it received from the CustomSTS passive endpoint and then
also dumps out the set of claims it received from the WCF service method all and displays it on
the page to the browser client.

Prerequisites

Install WIF Runtime

Install WIF SDK

The Application Pools hosting your web apps have Load User Profile set to true
IS already installed

Visual Studio .NET 2010

An account setup with Windows Azure: https://windows.azure.com

Phase 1 - Build claims aware web app that requires Windows Live ID claim
through ACS

Step 1

- Generate Certificates

For a production system you’ll want to use official issued certificates from a trusted root authority or a
third party authority like VeriSign. For this walkthrough we’ll generate certificates using makecert.exe.

http://learn.iis.net/page.aspx/624/application-pool-identities/
https://windows.azure.com/

I’'m going to generate four different certificates: A root authority certificate (CN=Repro Root Authority),
a localhost certificate for SSL (CN=localhost), a signing certificate (CN=Repro Signing Cert), and an
encryption certificate (CN=Repro Encryption Cert). Running makecert will install these certificates into
the certificate stores during execution however I'll call out any scenario where we have to copy a public
key (*.cer) or private key (*.pfx) to a different certificate store.

Use makecert.exe to generate our root authority certificate
1. Open up an Administrative level Visual Studio 2010 Command Prompt
2. Change directories to a working directory
3. Execute the following command to generate the root authority certificate and have it
automatically installed into the LocalMachine -> Trusted Root Certification Authorities store

makecert -pe -n “CN=Repro Root Authority” -ss AuthRoot -sr LocalMachine -sky signature -r
“Repro Root Authority.cer”

B Administrator: Yisual Studio Command Prompt {2010) — |0 H

C=stenp CustomSTS *makecert —pe —n "CH=Repro Root Authority" —ss AuthBRoot —sr Locmm
alMachine —=sky signature —» "Repro Root Authority.cer

Succeeded

E cerks - [Console Root' Certificates {(Local Computer}'Trusted Root Certification Authorities', Certificates]

E File Action ‘iew Favorites ‘Window Help

o FHE 4 XE = HIGE

=] H Certificates {Local Computer) j Issued To =
| Personal ip Repro Root Autharity Lepro Root Authority . E
=[] Trusted Rook Certification Authaorities - =5 Thawte Premium Server CA Thawte Premium Server C& 12031/2020
| Certificates | v _ﬁlthawte Primary Root CA thawite Primary Root CA 7116/2036
3

4

E:xpirakion Dat

Issued By

L

Trusted Root Certification Authorities store contains 40 certificates.

Figure 1 Generate Root Authority Cert. Shows up in Local Machine -> Trusted Root CA store

Use makecert.exe to generate our localhost certificate used for SSL in IIS. (NOTE: | assume that you do
not already have a localhost certificate on this machine. If one already exists then you can export, with
private key, to back up that existing localhost certificate before proceeding on with these steps)

1. Inthe same VS.NET command prompt execute the following command to generate the localhost
certificate that we’ll use in IS for SSL. This certificate will install into the LocalMachine ->
Personal store. Notice here that we sign the certificate with the root authority certificate we just
created:

makecert -pe -n "CN=localhost" -ss my -sr LocalMachine -sky exchange -a shal -in "Repro Root
Authority" -is AuthRoot -ir LocalMachine "localhost.cer"

EX Administrator: Yisual Studio Command Prompt {2010} iy | ﬂ

C:wtemp~CustomSI8 *makecert —pe —n "CM=localhost'" —sz my —sr LocalMachine —-sky ex
change —a shal —in “Repro Root Authority" —is AuthRoot —-ir LocalMachine "localhops

E cerks - [Console Root' Certificates {Local Computer)'PersonalCertificates]

E File Action Miew Favorites Window Help

o | HE 4 B KD._. E*_r

=l H Certificates {Local Computer) ﬂ Issued To =
= | Persanal =

| Certificates = .
‘| | [» 1|

Personal stare contains 9 certificates.

Issued By
Repro Root Authoriby

Expiration Dal

localhost

Figure 2 Generate the localhost certificate for SSL. Installed into LocalMachine -> Personal store

Use makecert.exe to generate our signing certificate used for signing tokens by our CustomSTS
1. Inthe same VS.NET command prompt execute the following command to generate the signing
certificate. This certificate will install into the LocalMachine -> Personal store. Notice here that
we sign the certificate with the root authority certificate we previously created:

makecert -pe -n "CN=Repro Signing Cert" -ss my -sr LocalMachine -sky exchange -a shal -in
"Repro Root Authority" -is AuthRoot -ir LocalMachine "Repro Signing Cert.cer"

B Administrator: ¥isual Studio Commmand Prompt (2010) — (O ﬂ

C-stempsCustomSTS *makecert —pe —n "CH=Repro Signing Cert" —ss my —sr LocalMachin
e —sky exchange —a shal —in "Repro Root Authority” —is AuthRoot —ir LocalMachinems

"Repro Signing Cert.cer'
Succeeded

E cerks - [Console Root' Certificates {Local Computer)Personal’Certificates]
E File Action ‘iew Favorites Window Help
o HE 4L XE 2| HE

=] H Certificates (Local Computer) j Issued To =
-

= || Personal —1 S Repro Signing Cert

| Certificates =
4 | | » 4|

Personal store contains 10 certificates,

Issued By

Repro Roaot Autharity

Figure 3 Generate signing cert. Installed into LocalMachine -> Personal store

Use makecert.exe to generate our encryption certificate used for encrypting tokens by our CustomSTS
1. Inthe same VS.NET command prompt execute the following command to generate the signing
certificate. This certificate will install into the LocalMachine -> Personal store. Notice here that

we sign the certificate with the root authority certificate we previously created:

makecert -pe -n "CN=Repro Encryption Cert" -ss my -sr LocalMachine -sky exchange -a shal -in
"Repro Root Authority" -is AuthRoot -ir LocalMachine "Repro Encryption Cert.cer"

Bl Administrator: Yisual Studio Command Prompt {2010) - |0 ﬂ

CostempsCustomSTS *makecert —pe —n “"CH=Repro Encryption Cert" —-ssz my

ine "Repro Encryption Cert.cer"
Succeeded

E cerks - [Console Root' Certificates {Local Computer)iPersonal’Certificates]

E File Action ‘iew Favorites Window Help

e 2@ £ LIXE > B

—sr LocalMac
hine —sky exchange —a zhal —in "Repro Root Authority' —isz AuthRoot —ir LocalMachps

Jd |

al

=] E Certificates (Local Computer) ﬂ Issued To = Issued By | Expiration Dat
= [Personal — | "Ellacalhost Repro Root Authority 12)31§2039
| Certificates } 5 Repro Encryption Cert Fepro Rook Authority 12

| Trusted Roat Certification Autharities | | %2 1Repro Sigring Cert Repra Raot Autharity 12312039
]

Personal store contains 11 certificates,

Figure 4 Generate encryption cert. Installed into LocalMachine -> Personal store

Step 2 - Configure IIS for SSL using our localhost certificate

In this step we will configure the local IIS to use the localhost certificate we just created for SSL
encryption. In a production scenario you would use a certificate for your publically exposed website or a
fully qualified domain name certificate instead.

1. Click on Start -> Administrative Tools -> Internet Information Services (IIS) Manager. This
launches the 1IS management console

2. InlIS manager, click to expand the node containing your machine name, then expand Sites
folder. Click to highlight the Default Web Site node and then in the Actions pane on the right
hand side click the “Bindings...” link

3. Inthe Site Bindings dialog select, or click to Add and edit the binding for https type. Change the
SSL certificate drop down option and select the localhost certificate that we created in previous
steps above. Then click OK button and Close button to apply those changes.

Actions

me
2 Explore
Edit Permissions. ..
g Show Al | Group by Area - s?:? - e
Edit Site
Site Bindings 7| x| Bindings...
D Basic Settings...
Type Host Mame Port IP Address Binding Add... i i
¥ http a0 " View Applications
G https 443 " Wiew Yirkual Direckories
Edit Site Binding I E3 | Manage Web Site
q Type: IP address: Port: - o Restart
|htt|:|s J |AI| IUnassigned ﬂ |443
B stop
| e Browse Web Site
1 £
S5L certificate: . Browse *:80 (hetp)
| Browse *:4473 (https)

| —
an ¢ localhost View. ..
Advanced Settings. ..
oK | Cancel | Configure

:i'.- Failed Request Tracing. ..
- - - — —
IP dddress ISAPI Filkers Logging MIME Tvpes Modules Cutput Limits. .,
and Dari,.. Caching

Step 3 - Give permissions of application pool to certificate private keys

We need to give the application pool identity read permissions to the certificate private key. There are
several ways to adjust permissions to private keys but we’ll use the built in functionality of the
certificate manager Ul as part of Windows 7 and Windows 2008.

1. Go to Start and enter mmc.exe, press enter to launch the Microsoft Management Console

2. Inthe console select the File menu and select Add/Remove Snap-in...

3. Inthe list of available snap-ins on the left hand side select Certificates and click the Add> button.

4. Select the Computer account radio button and click Next

5. Select the Local computer radio button and click Finish, then click OK

6. Expand the Certificates (Local Computer) node

7. Expand the Personal node then click on the Certificates folder for this store

8. You should now see the localhost and two Repro certs that we added to this store in previous
steps

9. Right click on the localhost certificate in the list, select All Tasks, then click Manage Private

Keys... option

Consolel - [Console Rooth Certificates {Local Computer)sPersonal’Certificates]

File Ackion ‘iew Favorites Window Help

o HE 4L XE = HE

Issued To =
L

| Consale Roak (5‘
= H Certificates {Local Comput VS |ocalhost
= [] Personal EolRepro Encrypion Cert

. J Cer.tiﬁcates f 5Repra Signing Cert Al T
4| | » 4| ot

Contains actions that can be performed on the ikem. Copy

Delete
Properties

Help

Issued By
ro Rook Aukhority 1213
oro Ruoot Authority 12131

Expir:

Open

Request Certificate with Mew Key. ..
Renew Certificake with Mew Key, .,

Manage Private kewvs. ..
Advanced Operations r

Export...

10. This launches the permissions available for this specific localhost private key container file. We

need to give the application pool identity read permissions to this private key. My application
pool identity is Network Service so I'll add that here. If your application pool is configured to run
as ApplicationPoolldentity in 1IS then you would add this user using “1IS APPPOOL\{App Pool
Name” where you replace the {app pool name} with the name of your application pool, ie for

the default app pool you would give permissions to the user “lIS APPPOOL\DefaultAppPool”.

Here is a screen shot of the permissions to my localhost private key after giving the Network

Service read permissions:

| Permissions for localhost private keys ﬂ

Security |

Gru:uup ar Uzer names:

*?[_ SYSTEM

fil_‘ Administrators [FOUST 2008%Adminiztratars)]
FY AME TWORK SERYICE
3251550532114

Add.. | Remove |
Permizzions for NETWORE
SERYICE Al Deny
Full control O O
Fead O
5 pecial permissions O O

For zpecial permizzions or advanced zettings, Advanced
click Advanced.
Learn about access conbrol and permissions

k. | Cancel | Apply |

11. Repeat steps 9 and 10 for the Repro Encryption Cert and the Repro Signing Cert certificates,
giving your application pool identity read permissions to those private keys as well.

Step 4 - Create the Claims Aware ASP.NET Web Application (relying party)

Launch Visual Studio .NET 2010 as an Administrator
Click File menu -> New -> Project...
In the New Project dialog expand Other Project Types and select Visual Studio Solutions

Select Blank Solution
Give the solution a name, for our walkthrough we’ve selected FederatelivelD, select the

location and click OK

vk wnN e

New Project ﬂﬂ

Recent Templates | MET Framework 4 ﬂ Sort by |DeFauIt ﬂ | Search Installed Templates o |

Installed Templates

| Blank Soldti eSS Type: Visual Studio Solutions
- lank. Solution isual Studio Solutions
Wisual C# 'ﬁ Create an empty solution containing no
Other Languages projects

= Other Project Types
Setup and Deployment
Extensibility
visual Studio Solutions
Database
Modeling Projects
Test Projects

Online Templates

Marre: | FederateLivelD
Location: | c:temp CustomsTS - Browse, ..
Solution nare: |FederateLivelD [V Create directory For solution

[Add to source contral

6. Next we will add the ASP.NET Relying Party application to our solution

Go to File Menu -> Add -> New Web Site...

8. Select the C# -> Claims-aware ASP.NET Web Site template (WIF 4.0 SDK should be installed if this
project type does not show up)

9. Enter the web location of https://localhost/ClaimsAwareASPX and then click OK to add the
relying party web app to our solution

™~

Add New Web Site

Recent Templakes | MET Frameswork 4 ﬂ Sart by: |DeFauIt

Installed Templates

]

isual Basic _Ecﬁ

Wisual C# @
ch

Online Templates

E
N
N

N

ASPLMET Web Site

ASP.MET Empty Web Site

ASPL.MET Dynamic Data Entities Web Site

ASPLMET Dynamic Data Ling ko SCL Web Site

WCF Service

ASP.MET Reports Web Site

ASP.MET Security Token Service Web Site

Claims-aware ASP.MET Web Site

" Claims-aware WCF Service

WCF Security Token Service

ASPL.MET Crystal Reports Web Site

g &

Visual Ca
Visual C#
Visual Ca
Visual Ca
Visual C#
Visual Ca
Visual Ca
Visual C#
Visual Ca
Wisual C#

Visual Ca

21 %]

| Search Inskalled Templates 2 |

Type: Yisual C#
Claims-aware ASP.MET Web Site

‘Web location: | HTTP j | https: filocalhostClaimsawar eASPY

Step 5 - Create the ASP.NET Security Token Service Web Site

ﬂ Browse...

Next we will add a Security Token Service (STS) that will serve as the basis for our CustomSTS. It will
contain an endpoint for WS-Federation passive clients and then later we will add an endpoint for WS-

Trust active clients.

1. Go to File Menu -> Add -> New Web Site...

N

Select the C# -> ASP.NET Security Token Service Web Site template

3. Enter the web location of https://localhost/CustomSTS and then click OK button to add the

Security Token Service web app to our solution

Add New Web Site 2| x|

Recent Templates | MET Framework 4 ﬂ Sart bry: |DeFauIt j | Search Installed Templates o |

Installed Templates

L.a)) Type: Visual C#
visual Basic = ASPMET ‘Web Site Wisual C#
=€ ASP.MET Security Token Service Web Site
Visual C#
% ASP.MET Emply Web Site Wisual C#
Online Templates
c/ﬁ;/ ASP.MET Dynamic Data Entities Web Site Wisual Ca#
L
chp,
4 ASP.MET Dynamic Data Ling to SCL Web Site Wisual C#
L
E‘i&; WCF Service Visual C#
Iﬂicﬁ ASP.MET Reports Web Site Visual C#
063‘ ASP.MET Security Token Service Web Site Wisual C#
o@> Claims-aware ASP.MET Web Site Yisual C#
SN, Claims-aware WCF Service Visual C#
Pe
oﬁy‘ WCF Security Token Service Wisual Ca#
p
‘% ASP.MET Crystal Reports \Web Site Wisual C#

‘Web location: | HTTP j | https: {flocalhostfCustomsTS ﬂ Browse, .,

4. Now go back to IIS manager

Refresh the Default Web Site node in the left hand connections pane

6. Click the ClaimsAwareASPX web app and then double-click on the Authentication icon in the
features view. Make sure you have the following authentication modes enabled/disabled:

o

Anonymous Authentication — Enabled
ASP.NET Impersonation — Disabled
Basic Authentication — Disabled
Forms Authentication — Disabled
Windows Authentication - Enabled

7. Click the CustomSTS web app and then double-click on the Authentication icon in the features
view. Make sure you have the following authentication modes enabled/disabled:

Anonymous Authentication — Enabled
ASP.NET Impersonation — Disabled
Basic Authentication — Disabled
Forms Authentication — Enabled
Windows Authentication — Enabled

8. Modify the CustomSTS to use our specific sighing and encryption certificates. Open the
web.config file of the CustomSTS project and in the <appSettings> section enter the following
values:

<appSettings>

<add key="IssuerName" value="PassiveSigninSTS"/>

<add key="SigningCertificateName" value="CN=Repro Signing Cert" />

<add key="EncryptingCertificateName" value="CN=Repro Encryption Cert" />
</appSettings>

We are simply specifying that our CustomSTS will use certain certificates for signing and encrypting
tokens.

Step 6 - Add STS Reference to our CustomSTS

3.

4.

In the open VS.NET 2010 select the Build menu and select Build Solution to build the solution in
the current state

Next, in the solution explorer right click on the https://localhost/ClaimsAwareASPX/ web app
and then select Add STS Reference

Solution Explorer

=ia ek

_g Solution 'FederatelivelD' (2 projects)
= | ;‘P https:/ /localhost /Claims AwareASPX,

Build weh Site shift+F& 7 L= App_Code
4l Publish Web Site # [E| Default.aspx
=+ ,j Lagin, aspx
ciiAdd Mew Tkem... Chrl+ShifE+4 _; weh,canfig
2] Add Existing Item... Shift+al+4 =P https:/flocalhost{Custom3TS)

Lz App_Code
4 [FederationMetadata
add ASP.MET Folder LT |j Defau|t.aspx
=+ ,j Lagin, aspx
S5 Web.config

4 Mew Folder

Add 5T5 reference. ..

e Wirkual Direckary, .,
Ipdate federation metadata
Add Reference. ..

fdd Service Reference, ..

Add Deplovable Dependencies. ..

This launches the Federation Utility (fedutil.exe) to configure this relying party application to
require issued tokens from a security token service

On the welcome page leave the default settings. These values are picked up from the project
properties and auto populate with the path to the relying party web.config file and the
application URI for the relying party application. Click Next on this welcome screen

On the FedUtil Security Token Service page select the Use an existing STS radio button and then
enter the full path to our CustomSTS federation metadata xml file:
https://localhost/CustomSTS/FederationMetadata/2007-06/FederationMetadata.xml

{ ;1 Administrator: Federation Ukility - x|

6.
7.

8.

Security Token Service

-
Select a Securty Token Service [ST5) ophion. [’,:..’:l
I |
" MoSTS
Enables claims programming model for the selected application. This option does not require a Security Token
Semvice.

" Create anew ST5S project in the current solution

A new STS project will be added to the current solution. The zelected application's configuration will be
modified to trust and accept claims izsued by thiz STS. This option iz only available through the add 5TS
reference...' menu item in Wisual Studio.

* |z anexising 5TS
The selected application's configuration will be modified to truzt and accept the claims izzued by an existing

S5TS. Specify the w5 -Federation metadata document location for the existing STS.

5T5 WS-Federation metadata document location

||STS.-"Feu:Ieratiu:-nM etadatas2007-06/Federationt etadata, xm, Browse. .. | Test location. . |

[E=ample: bitpz: A fabrilam. com/Federationtd etadata,/2007-06/F ederationtd etadata, smi]

¢ Back | M et Cancel |

Click Next

Next you will see the Security Token encryption page. We will be applying encryption for both
the passive and active endpoints of our CustomSTS so select Enable encryption radio button.
Click the Select an existing certificate from store radio button and click the Select Certificate...
button. This prompts a dialog listing all the available certificates in the Local Machine ->
Personal store that you can enable for encryption. Select the Repro Encryption Cert certificate
that has the issuer Repro Root Authority that we created and then click OK.

(14 Administrator: Federation Uility

10.

|- | Repro Signing Cert
- - Issuer: Repro Root Authoriby
Security token encryption . & ' Yalid From: 13002012 to 12/31)2039

Securnty tokens izsued by an 5TS can be encropted. Select 2
application.

" Mo encryption
Security takens izsued by the STS will not be encrypted.

* Enable encryption

Security takens izsued by the STS will be encrypted by the

Mote: Make sure that the private key of this encroption cer
which the application rung [example: MetworkService).

Encrpption Certificate

" Generate a default certificate oK

* Select an existing certificate from store

Select Certificate. ..

< Back MNest > Cancel

Next you will see the Offered claims available from the CustomSTS. By default there are only
two, the Name and Role claims. You can see this by reviewing the contents of the CustomSTS
FederationMetadata.xml file that gets generated by the project template. It only shows the
Name and Role claims in the available <fed:ClaimTypesOffered><auth:ClaimType...> elements.
We can adjust all of these requirements through configuration changes later as needed. Simply
click Next on this Offered claims dialog.

Review the FedUtil summary page and click Finish button to complete the wizard.

Quick Note: Our CustomSTS is configured to use an encryption certificate and a signing
certificate. When you run through the FedUtil wizard it updates the relying party application
with these certificate details. Open the config file of your relying party application and find the
<microsoft.identityModel> section. The encryption certificate that we have configured for our
CustomSTS will be referenced in the
<microsoft.identityModel><serviceCertificate><certificateReference/> element of the relying
party config file. The signing certificate that we configured for our CustomSTS will be reference
in the <microsoft.identityModel><issuerNameRegistry><trustedlssuers><add/> element of the
relying party config file. The one problem with this is that during the FedUtil wizard it will ask
you what certificate to use during encryption/decryption process but it doesn’t prompt you for
which signing certificate to use. This is because the signing certificate information is acquired
from the FederationMetadata.xml file of the CustomSTS which defaults to using the STSTestCert

certificate that installs with the WIF SDK. This means that we will have to update the ASPX
relying party web.config file, specifically the
<microsoft.identityModel><issuerNameRegistry><trustedlssuers><add/> element to specify the
thumbprint of the Repro Signing Cert instead of the STSTestCert

11. If you build the solution at this point and then attempt to browse to the
https://localhost/ClaimsAwareASPX/default.aspx page you should see the browser is redirected
to the login form of our CustomSTS web app where you can simply click submit to log in and
then you’ll see the list of default claims created for the user Adam Carter for the out of the box
WIF web application templates.

Step 7 - Add Relying Party trust in Azure Access Control Service and configure Windows Live
ID as our Identity Provider.

During this step we will register the CustomSTS web application as a relying party application within
Windows Azure ACS and we’ll configure this trust use Windows Live ID as the identity provider so that
users can log into your web application using their live.com credentials. For this step | will assume that
you already have an account in Azure. If you don’t already have an account, when you browse to this
page https://windows.azure.com/ and log in with your Live ID then you should see a Sigh up now button
to setup a Windows Azure account.

1. Open a browser and browse to https://windows.azure.com/
2. When the main page loads on the bottom left hand navigation menu select Service Bus, Access
Control & Caching button

https://localhost/ClaimsAwareASPX/default.aspx
https://windows.azure.com/
https://windows.azure.com/

£ Windows AzurePlatform

Common Tasks

@ 8 3

MNew Hosted New Storage New Datsbase Connect

Billing | Todd Foust | Signout = &

e

Service Account Server

[Getting Started
3 Common Tasks
3 Help and Support
[3 Beta Programs

P —

(1. Hosted Services, Storage
Accounts & CDN

li Database

@ Data Sync

“i.| Reporting

i I Service Bus| Access Control

wa. Virtual Network

Ready

| »

Getting Started with the Getting Started with Windows
New Portal Azure

| What's New in this 9 Install the Windows Azure Tools

Release

Get Windows Azure Toels for Visual Studio and
Mew features other downloads to start building and
Release notes debugging applications for Windows Azure. »

m

How to Perform Common
Tasks 9 Create your first Windows Azure

) local application
Create a new hosted service

Create a new storage account Learn how to create a simple ASP.NET
application in Visual Studio for Windows
Create a new database Azure.

Create a new virtual network

g Where do I find thingsin | @

this new portal? Deploy and run your Windows

Azure application

P o |
Where are my hosted services? Learn how to deploy and run your sample

Where are my storage accounts? application in Windows Azure. »
Where are my projects?

- -

5
© 2012 Microsoft Corperation Privacy Statement Terms of Use ' Help and Support ' Feedback ﬁ

3. Then under the list of Services on the left hand top navigation panel select Access Control:

£ Windows Azure Platform

Y

Service Namespace

4 - Services
11 Access Control
& Service Bus

4 Caching

Hosted Services, Storage

4" Accounts & CDN

English

notifications, news, and announcements.

About Service Namespaces

The services are "multi-tenant”, meaning that
many users or tenants can share the
services. Tenants are isolated from each
other for security and billing purposes. To
uniquely identify tenants, we use an identifier
called a "service namespace.”

This text value is created by you, and
appears in service and management URIs
that the services generate. You can choose to
create one or more service namespaces

] Billing | Todd Foust | Sign Out

FUppVIL

Important compatibility note about Access
Control nameaspaces created before April
2011.

in the Service Namespace section at the top of the page:

£ Windows Azure Platform

U U

MNew

Service Namespace

4 4 Services

+1 Access Control

. 2 :

Refresh

Choose Columns 7]

Mame

Manage Access Control

Type

In the Create a new Service Namespace dialog select Access Control for available services, then

enter a unique Namespace string, select appropriate country and subscription. You'll want to
click on the Check Availability to make sure that namespace name isn’t already taken. For this
walkthrough I’'m using the Namespace name of “foust-repro-service-namespace”:

l] Database based on your security and hilling isolation
reguirements.

.;-3:3- Data Sync Example service URLs for namespace

ol Reporting - Access Control: https://
.accesscontrol.windows.net

= Senfloe_ B e Conigl - Service Bus: https://
& Caching . .

.servicebus.windows.net

o Ta Virtual Network - Cache:

Ready @ 2012 Microsoft Corporation Privacy Statement Terms of Use | Help and Support | Feedback ‘,i.

4. In ACS we need to create a new Namespace if one does not already exist. Click the New button

Create a new Service Namespace

This will create a new Service Namespace with checked services enabled.

Available Services General Properties
B coeeec conbe MNamespace |fnust-repro-service-namespace | lCheck ﬁvailabilityj
LI Service Bus Available
|| Cache) -
Country/Region | United States (South/Central) v
Subscription | Subscrption-1 - |

Service Properties

Cache - Cache Size Quota

[Create Namespace“ Cancel]

6. Click the Create Namespace button. This will take a few minutes to activate the namespace. You
can click the Refresh button on the page navigation bar at the top of this page while you wait for
the namespace activation to complete. | had to wait two minutes before that namespace
become active.

7. Click on the namespace that we just created and then click the Access Control Service button at
the top to configure ACS for this namespace:

£ Windows Azure Platform English
U U U &
Service

New Modify Delete Refresh ‘ Access Control

Service Namespace Manage Access Control

<
4 3 Services Choose Columns (™|
14/ Access Control Name Type Status Created on Country/Region = ACS Version
X .
& Service Bus |25 Subscription-1 Subscription Active
4 Caching {} foust-repro-service-namespace Namespace Active /30/2012 3:49:03 PM UTC United States.. ACSV2

8. This takes you to the main Access Control Service (ACS) page. On the left hand side is a
navigation column where you can adjust many settings for ACS.

9. First click on the Identity Providers link. In ACS the Windows Live ID is already added as an
Identity Provider. For our walkthrough we’ll use this default identity provider, however you can
add other identity providers like Facebook, Google, Yahoo! or even your own ADFS instance by
clicking the Add link above the list of current Identity Providers:

£ Windows Azure Platform

Access Control Service

Home

Trust relationships
Identity providers
Relying party applications
Rule groups

Service settings
Certificates and keys
Service identities
Administration
Portal administrators
Management service

Development
Application integration

English

Service Mamespace: foust-repro-service-namespace

Identity Providers

Add or manage identity providers with which you want to authenticate into your relying party application. To configure direct
authentication with ACS, see Service Identities.

Add | Delete
[™ame Type
Windows Live ID Windows Live ID

Return to Home

10. Click on the Relying party applications navigation link so that we can add our CustomSTS as a
relying party to ACS. Click the Add button to add a new Relying Party Trust:

£ Windows Azure Platform

Access Control Service

Home

Trust relationships
Identity providers

Rule groups

Service settings
Certificates and keys

Service identities

IEninsh

Service Namespace: foust-repro-service-namespace

Relying Party Applications

Add or manage relying party applications. Relying party applications are your websites, applications, and services for which you want to
use ACS to implement federated authentication. Relying party applications consume claims from identity providers to make
authentication and autherization decisions. Learn mere about relying party applications.

Add | Delete

Mo relying party applications are configured in this servica namespace. To configure a relying party application, click Add.

Return to Home

11. On the Add Relying Party Application window fill out the details of the form for our sample

walkthrough:

a. Name: https://localhost/CustomSTS/

Se 0 oo0T

Mode: Enter settings manually

Realm: https://localhost/CustomSTS/

Return URL: https://localhost/CustomSTS/default.aspx
Token format: SAML 1.1

Token encryption policy: Require Encryption

Token lifetime (secs): 600

Identity providers: leave Windows Live ID checked
Rule groups: leave Create new rule group checked

j. Token signing: Use service namespace certificate (standard) Note: ACS will sign the
SAML token that it issues. The public key, used in verifying signature, will be configured
in our CustomSTS when we add an STS reference to this ACS instance.

k. Token Encryption: Click Browse and find our encryption cert, currently at
“c:\temp\customsts\Repro Encryption Cert.cer”. Note: ACS will use the public key

(*.cer) of this certificate to encrypt the token it issues to our CustomSTS. The CustomSTS
already has access to the private key needed to decrypt the token and get its claims:

£ Windows AzurePlatform
Access Control Service Service Namespace: foust-repro-service-namespace > Relying party applications >
Home - . .
Add Relying Party Application
Trust relationships Use the following optiens to configure your relying party application in this service namespace.
Identity providers
 Rebing party applicatons sk et S

Rule groups Name

Enter a display name for this relying party application.
Serﬁce settings https:/flocalhost/CustomS TS/
Certificates and keys Example: fabrikam.com
Service identities

Mode
Administration Click to configure your relying party application settings manually or to upload a WS-Federation metadata document with the settings
Portal administrators for your relying party application. Learn more
Management service @ Enter settings manually

() Import Ws-Federation metadata
Development
Application integration Realm
Enter the URI for which the security token that ACS issues is valid. Learn more
https:/flocalhost/CustomSTS/
Example: https://www.fabrikam.com (http://localhost is allowed.)

Return URL

Enter the URL to which ACS returns the security token. Learn more
https:/flocalhost/CustomSTS/default.aspx

Example: https://www.fabrikam.com/index.aspx (http://localhost is allowed.)

Error URL (optional)
Enter the URL to which ACS redirects users if an error occurs during the legin process. Learn more

Example: https://www.fabrikam.com/error.aspx (http://localhost is allowed.)

Token format
Select a token format for ACS to use when it issues security tokens for this relying party application. Learn more

[SAML 1.1[]

Token encryption policy

Select an encryption pelicy for tokens that ACS issues for this relying party application. Mote: Encryption must be selected if the
application is a web service that uses proof-of-possession tokens over the WS-Trust protocol because this scenario does not work
without encryption. Learn more

Require Encryption [=]

Figure 5 Portion of our Relying Party trust registration page

12. Click the Save button at the bottom of this Add Relying Party Application page that we just filled
out.

13. You should now see the relying party application we just added, the realm entered and the
token format of the token returned by ACS:

£ Windows Azure Platform

Access Control Service Service Namespace: foust-repro-service-namespace
Home . . .
Relying Party Applications

Trust relationships Add or manage relying party applications. Relying party applications are your websites, applications, and services for which you want to

Identity providers use ACS to implement federated authentication. Relying party applications consume claims from identity providers to make
_ authentication and authorization decisions. Learn more about relying party applications.

Rule groups Add | Delete

Service settings Relying Party Applications

Certificates and keys [C] application Name Realm Token Format

SERER 0 https://localhost/CustomsTS/ httpsy//localhost/CustomSTS/ SAML 1.1

Administration

Portal administrators Return to Home

14. Next we need to add a set of rules to the rule group created for our Relying Party application
registration. In the left hand navigation click the Rule groups link. Then click the new rule group
that was just added for us Default Rule Group for https://localhost/CustomSTS/:

£ Windows Azure Platform
Access Control Service Service Namespace: foust-repro-service-namespace
Home
Rule Groups

Trust relationships Add or manage rule groups. Rule groups define how claims are passed from identity providers to your relying party applications. Learn
Identity providers mare about rule groups.
Relying party applications Add | Delete

Rule Groups
Service settings [Mame

Certificates and keys

[Default Rule Group for https:{,flccalhost{CuslomSTS,-‘;

Service identities

Administration Return to Home

15. In the Edit Rule Group page you can change the name of the rule group if desired and you can
also add specific rules for this group. For more information about adding individual rules that
govern what claims are issued in the token you can reference Rule Groups and Rules. For this
walkthrough we’ll just use the default rules used for issuing LivelD claims

16. Click the Generate link to generate the default rules for LivelD identity provider:

http://msdn.microsoft.com/en-us/library/gg185923.aspx

£ Windows Azure Platform

Access Control Service

Service Namespace: foust-repro-service-namespace > Rule groups >

Home

Trust relationships
Identity providers

Relying party applications

Service settings
Certificates and keys

Service identities

Administration
Portal administrators

Management service

Development
Application integration

Edit Rule Group

Use the following options to specify how claims input into ACS are transformed into output claims delivered to your relying party
application.

Rule Group Details

Name
Enter a name for the rule group.
Default Rule Group for hitps://localhost/CustomSTS/

Used by the following relying party applications
|https:,fflocalhost,-’CustomSTS,r’

Save | | Cancel

Generate | Add | Delete

,__k M rules have been added. Click Generate to generate rules automatically, or click Add to add rules manually.

17. Then click the Generate button to generate the pass through rules that just pass the claims
returned from Windows Live ID identity provider into the claims that ACS issues to our

CustomSTS:

£ Windows AzurePlatform

Access Control Service

Service Namespace: foust-repro-service-namespace > Rule groups >

Home

Trust relationships
Identity providers

Relying party applications

Service settings
Certificates and keys

Service identities

Administration
Portal administrators

Generate Rules: Default Rule Group for https://localhost/CustomSTS/

Generate rules in this rule group that pass through the claims available from each identity provider to your relying party applications.
Learn more about rule generation.

Rule Generation Options

Generate rules for:
Select the identity providers to generate rules for. Existing rules will not be modified or deleted. Learn more

Windows Live ID

Generae

18. You will see only one rule added. Windows Live ID returns just the nameidentifier that
represents the Windows Live ID user. Simply click the Save button to save these newly added
rules to our rule group:

£ Windows Azure Platform

Access Control Service

Home

Trust relationships
Identity providers

Relying party applications

Service settings
Certificates and keys

Service identities
Administration
Portal administrators

Management service

Development
Application integration

Service Namespace: foust-repro-service-namespace > Rule groups >

Edit Rule Group

Use the following options to specify how claims input into ACS are transformed into output claims delivered to your relying party
application.

Rule Group Details

Name
Enter a name for the rule group.
Default Rule Group for https:/flocalhost/CustomSTS/

Used by the following relying party applications
https://localhost/CustomSTS/

Save | | Cancel

Generate | Add | Delete

[output Claim Claim Issuer Rule Description

[0 nameidentifier Windows Live ID Passthrough "nameidentifier” claim from Windows Live ID as "nameidentifier

lofl

19. At this point we have completed our relying party application registration within ACS. ACS will
sign the token using its own default certificate and encrypt the token using the public key of our
encryption certificate. Our CustomSTS will then be able to decrypt using the private key of our
encryption cert and verify the signature using the public key information (which will be found in
web.config after we run Add STS Reference next) and then be able to consume the claims before
issuing its own token to the ASPX relying party application.

20. Still within the Access Control Service administration page click the Application Integration link
in the left hand navigation panel. This will show you the specific Endpoint Reference urls you can
use to access ACS. Copy the WS-Federation Metadata url link as we will use that in our next

step:

£ Windows Azure Platform [English =] Windows Azure Portal | Si

Access Control Service Service Namespace: foust-repro-service-namespace
H - . .

eme Application Integration
Trust relationships Get the code required to integrate Access Control Service with your relying party applications.
Identity providers

Login P;

Relying party spplictions
Rule groups Learn how to configure your relying party applications to show a federated login page.
Service settings p Login Pages

Certificates and keys

Service identities SDKs and Documentation

Administration Learn how to configure your relying party applications to consume identity tokens issued by Access Control Service.

Portal administrators)
. § SDKs and Documentation
Management service

_ hManagement Service https://foust-repro-service-namespace.accesscontrol windows.net/v2/mgmi/service
Management Portal https://foust-repre-service-namespace.accesscontrol.windows.net/
OAuth WRAP https://foust-repro-service-namespace.accesscontrol.windows.net/ WRAPv0.9
Oauthz https://foust-repro-service-namespace.accesscontrol.windows.net/v2/0Auth2-13

https://foust-repro-service-namespace.accesscontrol.windows.net/FederationMetadata/2007

[R S -06/FederationMetadata.xml|

WS-Metadata Exchange https://foust-repro-service-namespace.accesscontrol.windows.net/v2 /wstrust/mex

Return to Home

Step 8 - Add STS Reference from our CustomSTS to our Azure ACS endpoint

Our CustomSTS (Security Token Service) web application will get SAML 1.1 tokens from ACS, then it will
add any other claims to that token before sending it back to the calling ASPX relying party application. In
this step we will configure the CustomSTS to get tokens from Azure ACS.

1. Inthe VS.NET 2010 open FederatelLivelD solution, right-click on the
https://localhost/CustomSTS/ web application in the solution explorer and then select Add STS
Reference...

2. This launches the Federation Utility wizard again, but this time we’re going to federate the
CustomSTS to our backend ACS instance.

3. Leave the default settings for Application Configuration location and Application Uri as
fedutil.exe picks these details up from the existing web application and click Next

[2.3 Administrator: Federation Utility - x|

Welcome to the Federation Wility wizard

=
Thiz wizard helps you to establish a tust relationship between a claims-aware application and a Secunty l*g
Token Service [5T5] '

Application configuration location

aroothCustormS zanifi Browse...

[Example: c:\inetpubiwswraothapplication yweb, config)

Application LRI

|https:a’a’lucalhusta’EustumSTS;’ ﬂ

[Example: bttpz: A Aasaw. contozo, comdapplication /]

Mewt » Cancel

4. Select the Use an existing STS radio button and enter the full path to the Azure ACS WS-
Federation Metadata link that we got from step 7-21 above. For my sample | entered
https://foust-repro-service-namespace.accesscontrol.windows.net/FederationMetadata/2007-
06/FederationMetadata.xml:

{11 Administrator: Federation Ukility - x|

Security Token Service

-
Select a Security Token Service [STS] oplion, [’,:'/J
I |
" MNoSTS
Enables claimz programming model for the selected application. This option does not require a Securnity Token
Semvice.

" Create anew ST5 project in the current solution

A new STS project will be added to the current solution. The zelected application's configuration will be
modified to trust and accept claims izsued by thiz STS. This option iz only available through the 'add 5TS
reference...' menu item in Yisual Studio.

* |sze an exising 5TS

The selected application's configuration will be modified to truzt and accept the claims izsued by an existing
S5TS. Specify the wWS-Federation metadata document location for the existing STS.

5T5 WS-Federation metadata document location

|:.net.-"Feu:Ieratiu:unMetadata.-’EIZII:I?-I:IE.-"FEderati-::nM etadata. «ml| Browze. .. | Test location...

[E=ample: httpz: A fabrilkam. com/Federationtd etadata,/2007-06/F ederationtd etadata. smi]

< Back | M ewt = Cancel |

5. Click the Next button. This takes you to the STS signing certificate chain validation error page.
The reason for this is that we have ACS configure to use its own self-signed cert for signing
tokens. We don’t have the certificate chain for that ACS cert on our local machine so we see this
page. To avoid this we could have configured ACS to use our own Repro Signing Certificate
certificate where we do have a certificate chain trust, however for this walkthrough we are
simply going to select Disable certificate chain validation radio button and click Next:

{ 7.1 Administrator: Federation Utility - x|

STS signing certificate chain validation error =)
>
Chain validation failed for one or more 5TS zighing certificates. Select a certificate walidation option. I —L'l/J

Thiz 5T5 uzes a self-izsued certificate for token zighing. Chain validation failed for one

STS signing certificate. Yiew Certificates. . |

(+ Dizable certificate chain validation

Chooze this aption far a development environment or far a praduction environment where the STS's signing
certifizate(z] are zelf-izzued,

" Enable cetificate chain validation

Choosze thiz option for a production environment where the ST5's signing certificate iz izsued by a Certificate
Autharity [CA). This vizard will place the falled certficate onta pour desktop. Impart the certificate to the
Truzted People certificate store of the account under which the application runz.

< Back M et Cancel

6. Now we see the Security token encryption page. We have already configured Azure ACS to
encrypt the tokens that it issues with our Repro Encryption Certificate so we will need to select
Enable encryption radio button here and then select that same Repro Encryption Certificate
from the LocalMachine -> Personal store:

{ ;1 Administrator: Federation Ukility

Security token encryption

e T8
Seu:lyrit{l_ tokens izzued by an STS can be encrypted. Select a security token encryplion option for your i 1 TJJ
application.

" Mo encryption
Security tokens izzued by the STS will not be encrypted.

{* Enable encryption
Security tokens iszued by the STS will be encrepted by the selected certificate.
Mate: Make sure that the private ke of this encryption cerificate iz accessible by the \Windows identity under
which the application runs [example; MetworkS ervice].

Encryption Certificate
" Generate a default certificate

¢ Select an existing certificate from stare

|EN =Repro Encreption Cert Select Certificate. ..

< Back Mext = Cancel

Click Next and you will now see the list of claims offered by our Windows Azure ACS relying
party registration to our CustomSTS “client”. There are only two claims returned: the first one is
the nameidentifier that we get from Windows Live ID identity provider for the authenticated
user. The second claims is the identity provider claim added by ACS to this claimset and so these
two claims will be returned to our CustomSTS for processing:

{11 Administrator: Federation Utility - x|

Offered claims g
—
Following are the claims offered by the Security Token Service. | :’g
Claim M ame Claim Type

Mame |dentifier http: /¢ schemas. smlzoap.orgdwae 2005/05 Adentity/claimsmameidentifier

|dentity Provider http: /¢ schemas. microzoft. comd acceszcontrolzervice/ 201 0/07 AclaimsAdentibpprovider

By default, only name and role claims will be requested by the application. pdate wour application's configuration
file to add/update vour claims requirement.

¢ Back M et Cancel

8. Click Next to see the Summary page. Then click Finish to complete the Federation Utility wizard.

9. Based on all these configuration changes and FedUtil.exe steps, when browsing to our
/ClaimsAwareASPX/default.aspx page, WIF will redirect the user to our CustomSTS for
authentication. The CustomSTS is now configured to redirect the user to Windows Azure ACS for
authentication. And Windows Azure ACS is configured to redirect the user to Windows Live ID
for authentication, whereupon the user will be challenged for credentials to login and then the
tokens will be returned all the way back to the original /ClaimsAwareASPX/default.aspx page for
processing.

Step 9 - Update CustomSTS to pass through and add outgoing claims

The CustomSTS is configured to issue a ClaimTypes.Name and ClaimsTypes.Role claims however we are
only getting the claims ClaimTypes.Nameldentifier and a custom claim type called IdentityProvider from
Windows Azure ACS. In this step we will modify the CustomSTS passive endpoint to pass through the
claims returned from ACS but then also add a name and role claim required by the front end
/ClaimsAwareASPX/ relying party application. I'm also going to add two additional custom claims that
help us identify that the claims came from this passive endpoint:

1. InVS.Net 2010, in the solution explorer, expand the https://localhost/CustomSTS web
application and then expand the App_Code folder

2. Double-click to open the CustomSecurityTokenService.cs code file

3. Find the method GetOutputClaimsldentity and modify the existing code to the following. This
code still copies all the claims returned from Azure ACS but then it adds the Name and Role
claims, thus making this returned token contain four total claims.

protected override IClaimsIdentity GetOutputClaimsIdentity(IClaimsPrincipal
principal, RequestSecurityToken request, Scope scope)

if (null == principal)
{

}

throw new ArgumentNullException("principal");

ClaimsIdentity outgoingIdentity = new ClaimsIdentity();
IClaimsIdentity incomingIdentity = (IClaimsIdentity)principal.Identity;

// Copy claims from incoming request which include ACS claims
// to outgoing identity
CopyClaims(incomingIdentity, outgoingIdentity);

// Issue custom claims.
// TODO: Change the claims below to issue custom claims required by your

// application. Here you would add any business logic to lookup a
// user based on their nameidentifier returned from ACS against a
// database and then populate further claims for that user as needed.

// Update the application's configuration file too to reflect
// new claims requirement.

// Hard coding the Name claim because I'm logging into Live.com using

// my own personal ID. You'd want to replace this with any business logic

// lookup to properly set the name claim of the user

outgoingIdentity.Claims.Add(new
Claim(System.IdentityModel.Claims.ClaimTypes.Name, "Todd Foust"));

outgoingIdentity.Claims.Add(new Claim(ClaimTypes.Role, "Administrator"));

outgoingIdentity.Claims.Add(new
Claim("http://localhost/CustomSts/PassiveEndpoint/ROTYClaim™, "Cam Newton"));

outgoingIdentity.Claims.Add(new
Claim("http://localhost/CustomSts/PassiveEndpoint/SuperbowlWinnerClaim™, "Giants"));

return outgoingIdentity;

4. Add the CopyClaims method implementation to this same CustomSecurityTokenService.cs code
file. This method just copies the incoming claims from the identity provider (Azure
ACS/Windows LivelD) to the outgoing token of our CustomSTS:

/// <summary>

/// Do a deep-copy of IClaimsIdentity except the issuer.

/// </summary>

/// <param name="srcIdentity">Source Identity.</param>

/// <param name="dstIdentity">Destination Identity.</param>

private void CopyClaims(IClaimsIdentity srcIdentity, IClaimsIdentity dstIdentity)

{

foreach (Claim claim in srcIdentity.Claims)

{

// We don't copy the issuer because it is not needed in this case.
// The STS always issues claims using its own identity.
Claim newClaim = new Claim(claim.ClaimType, claim.Value, claim.ValueType);

// copy all claim properties
foreach (string key in claim.Properties.Keys)

{
¥

// add claim to the destination identity
dstIdentity.Claims.Add(newClaim);

newClaim.Properties.Add(key, claim.Properties[key]);

}

// Recursively copy claims from the source identity delegates
if (srcIdentity.Actor != null)

{
dstIdentity.Actor = new ClaimsIdentity();

CopyClaims(srcIdentity.Actor, dstIdentity.Actor);

5. Build the entire solution. Build Menu -> Build Solution.

6. Attempt to browse to the https://localhost/ClaimsAwareASPX/default.aspx page and watch as
the browser redirects through your CustomSTS to Azure, to Live and back until the page is
displayed showing you the following similar output. This output displays the two claims added
by Windows LivelD and Windows Azure ACS as well as the two claims (name, role) added by our
CustomSTS passive endpoint implementation:

= Claims-aware ASP.NET Web Site - Windows Internet Explorer -0 ﬂ

—— _ =
@ Lade i |;£ https: | flocalhost/Claims&warea P Default, asp:)Oj == ||| | ¥ | X (& Claims-aware ASP.NET Web .., X 57

Windows Identity Foundation - Claims-aware ASP.NET Web Site

|claim Type "Claim Value |
http://schemas.xmlsoap.org/ws/2005/05/identity’claims/nameidentifier __________ by
http://schemas.microsoft.com/accesscontrolservice/2010/07/claims/identityprovider uri: WindowsLivelD
http://schemas. xmlsoap.org/ws/2005/05/identity’claims/name Todd Foust
http://schemas.microsoft.com/ws/2008/06/identity/claims/role Administrator
http://localhost/CustomSts/PassiveEndpoint/ ROTYClaim Cam Newton
http://localhost/CustomSts/ PassiveEndpoint/Superbowl WinnerClaim Giants

=l

7. NOTE: If you get the following error when the browser tries to navigate to your CustomSTS, or if
you open a browser and attempt to browse to https://localhost/CustomSTS/Default.aspx and
see the following error...

https://localhost/ClaimsAwareASPX/default.aspx

|~ 118 7.5 Detailed Error - 500.22 - Internal Server Error - Windows Internet Explorer

pr——
ey I@ https: /localhost/ CustomSTS/DeFaulk, aspx OB [=[+/[x (& 115 7.5 Detailed Error - 500..., X

Server Error in Application "DEFAULT WEB SITE/CUSTOMSTS"

Internet Information Services 7.5

|1l Error y l
HTTP Error 500.22 - Internal Server Erro

An ASP.NET setting has been detected that does not apply in Integrated managed pipeline mode.

r Detailed Error Information I

Module ConfigurationValidationModule Requested URL https://localhost:443/CustomSTS/ Default.aspx
Notification BeginRequest Physical Path C:\inetpub\wwwroot\CustomSTS\Default.aspx
Handler PageHandlerFactory-Integrated- Logon Method Not yet determined
4.0

Logon User Not yet determined
Error Code 0x80070032

Most likely © g

+ This application defines configuration in the system.web/httpModules section.

Things you can try:

» Migrate the configuration to the system.webServer/modules section. You can do so manually or by using AppCmd from the command line -
for example, % SystemRoot% \system32\inetsrv\appcmd migrate config "Default Web Site/™. Using AppCmd to migrate your
application will enable it to work in Integrated mode, and continue to work in Classic mode and on previous versions of IIS.

+ If you are certain that it is QK to ignore this error, it can be disabled by setting
system.webServer/validation@validateIntegratedModeConfiguration to false.

+ Alternatively, switch the application to a Classic mode application pool - for example, %SystemRoot% \system22\inetsrv\appcmd set
app "Default Web Site/™” fapplicationPool:"Classic .NET AppPool”. Only do this if you are unable to migrate your application.

(Set "Default Web Site" and "Classic .NET AppPool” to your application path and application pool name)

This error indicates a conflict of hosting the CustomSTS in an Integrated Pipeline mode of the
application pool and the existence of the <system.web><httpModules/> section. To get past this
error you can take one of two actions:

a. Comment out the <system.web><httpModules/> section of your web.config file. This
section is read by IIS 6 and earlier versions. For IIS 7 and later we read in these settings from
<system.webServer><modules/> section instead

b. Leave the <system.web><httpModules/> section in place but then add the following
<validation> element to the <system.webServer> section to bypass this check while in
integration pipeline mode:

<system.webServer>
<validation validateIntegratedModeConfiguration="false"/>
<modules>
<add name="WSFederationAuthenticationModule" ... />
<add name="SessionAuthenticationModule" ... />
</modules>

</system.webServer>

Phase Summary

During this phase of the walkthrough we created a claims aware web front end application that requires
issued tokens from a CustomSTS. We added the CustomSTS security token service and configure it to
federate with Windows Azure ACS. Within Azure ACS we configured a relying party application and
configured that registration to use Windows Live ID to be the identity provider. We modified the
CustomSTS implementation to pass through the claims returned from ACS and then also add the Name
and Role claims in the issued token that the client sends to the claims aware front end web application.

Our next goal is to find a way to have our ASPX page call a claims aware WCF service. The call will
‘delegate’ the original security token used to access the ASPX page to the backend claims aware WCF
service. The WCF relying party application will use the same CustomSTS as its security token service
however this time the STS will be the identity provider, we won’t be going back to Azure ACS on the call
to the claims aware WCF service. This isn’t possible in any case because Windows Live ID doesn’t expose
an active WS-Trust endpoint for authentication.

Phase 2 - Adding Active Endpoint to the CustomSTS Security Token Service

In Phase 1 we walked through the steps to support passive clients against our CustomSTS and then
federate those calls against Windows Azure Access Control Service and Windows Live ID. That was the
easy part. Over the remaining phases of this walk through we add an Active Endpoint to the CustomSTS,
Add a claims aware WCF service, then delegate the token to the backend WCF service for additional
claims processing. ldentity delegation in this design makes use of a term called “ActAs token” which
refers to a token that is issued by a STS and contains the user’s identity (claims). The Actor property
contains the STS's identity.

In my discussions with Vittorio Bertocci about this scenario he stated “The ActAs (token) is probably the

most complex thing you can do with WIF, building it bottom-up would be really hard.” In retrospect he is
correct but | will try to walk you through the steps below. The main challenge is that we cannot depend

on all the tooling support for configuring this scenario, so we have to do a lot of the work by hand.

I'll try to step through each piece of the remaining design architecture to hopefully simplify this process
and help shine some light into how WIF processes these identity delegation scenarios. First we’ll focus
on adding the WS-Trust Active endpoint to our CustomSTS which will be responsible for getting the
creating the delegated token and then issuing the token back to the client before the client sends the
token on to the claims aware WCF service. We will programmatically add the WIF enabled Active
endpoint.

Step 1 - Add ActAslIssuer.svc WCF service endpoint which will become our WS-Trust Active
endpoint

1. Inour open Visual Studio .NET 2010 FederatelLivelD solution right-click on the
https://localhost/CustomSTS/ project and select Add New Item...

2. Select WCF Service in the list of templates and give it the name ActAslssuer.svc then click the
Add button to add this to our CustomSTS project

Add New Item - https://localhost,/CustomSTS,/

Installed Templates

Visiial Basic
Visual C#

Online Templates

Mame:

Sork by: |DeFauIt j
Ci ig Silverlight-enabled WCF Service

E

1y

=
E;
&

Sike Map

Skin File

SQL Server Database

Style Sheet

Text File

Text Template

WCF Data Service

WCF Service

web Configuration File

Web Service

HML File

#ML Schema

#3LT File

Visual C#

Yisual C#

Visual C#

Visual C#

Visual C#

Yisual C#

Visual C#

Visual C#

Yisual C#

Yisual C#

Visual C#

Visual C#

Yisual C#

Wisual Ca#

| ActhsIssuer fvc

Step 2 - Implement the Active Endpoint

The ActAslssuer.svc that we just added is a normal WCF service, with a code behind and interface code
file. We are going to take the following steps to make this a WIF-based WS-Trust Active Endpoint. Most
of the classes and code here was taken from the WIF 4.0 SDK sample “Web Sites And Identity — Exercise
4 - Invoking a WCF Service on the Backend via Delegated Access”. You can download this sample from
the WIF 4.0 SDK: http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=4451

1.

HE]
| Search Installed Templakes 2 |
j Type: Visual C#
A class for creating a WiCF service
=
I Place code in separate file
™ Select master page
T

In the CustomSTS project, expand the App_Code folder and delete both the ActAslssuer.cs and

IActAslssuer.cs code files. These are the default WCF template code files that we’ll replace in
further steps below.

Double-click to open the ActAslssuer.svc file
Replace the current declarations from this...

<%@ ServiceHost Language="C#" Debug="true" Service="ActAsIssuer"

CodeBehind="~/App_Code/ActAsIssuer.cs" %>

To This...

<%@ ServiceHost Language="C#" Factory="ActAsSecurityTokenServiceFactory"

http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=4451

Service="ActAsCustomSecurityTokenServiceConfiguration" %>

Instead of the implicit default WCF host factory we are explicitly specifying the factory and
service configuration classes. Next we will add those class files one at a time.

4. Add the service config information to the web.config file for this Active endpoint. Add or modify
the following <system.serviceModel> section of the CustomSTS web.config file:

<system.serviceModel>
<behaviors>
<serviceBehaviors>
<behavior name="ActAsStsBehavior">
<serviceMetadata httpsGetEnabled="true" httpGetEnabled="true"/>
<serviceDebug includeExceptionDetailInFaults="true" />
<useRequestHeadersForMetadataAddress/>
</behavior>
</serviceBehaviors>
</behaviors>
<!--<serviceHostingEnvironment multipleSiteBindingsEnabled="true" />-->

<services>
<service name="Microsoft.IdentityModel.Protocols.WSTrust.WSTrustServiceContract"

behaviorConfiguration="ActAsStsBehavior">

<!--
This is the HTTPS endpoint that supports IMetadataExchange.
-->
<endpoint address="mex" binding="mexHttpsBinding" contract="IMetadataExchange"/>
</service>
</services>

</system.serviceModel>

5. Right-click on the App_Code folder of the https://localhost/CustomSTS/ project in the solution
explorer and select Add New Item.... Select a class file and name this class
ActAsSecurityTokenServiceFactory.cs then click the Add button

Add New Item - https:/ /localhost /CustomSTS/

Installed Templates Sort by: |DeFauIt
Visual Basic
Visual C# Cﬁﬁ Alax-enabled WCF Service
Online Templates
Broweser File
Class

Class Diagram

Crystal Report

DiataSet

Drynamic Data Field

Genetic Handler

Global Application Class

HTML Page

|EE] 15cript File
< L to SOL Classes

Preprocessed Text Template

e Report

Visual Ca

Visual C#

Visual C#

Yisual C#

Visual C#

Visual Ca#

Visual C#

Visual C#

Wisual C#

Visual C#

Yisual C#

Visual C#

Visual C#

Visual C#

Marne: | ActAsSecurity TokenServiceFactory.cs

6. Replace the entire contents of the ActAsSecurityTokenServiceFactory.cs code file with the

following code:

// Microsoft Developer & Platform Evangelism

// Copyright (c) Microsoft Corporation. All rights reserved.

2%

| Search Installed Templates

d Type: Visual C#

An empty class declaration

=
™ Place code in separate File
I Select masker page

// THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND,

// EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES

// OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE.

// The example companies, organizations, products, domain names,
// e-mail addresses, logos, people, places, and events depicted
// herein are fictitious. No association with any real company,

// organization, product, domain name, email address, logo, person,

// places, or events is intended or should be inferred.

using System;

using System.Collections.Generic;

using System.Ling;

using System.Web;

using Microsoft.IdentityModel.Protocols.WSTrust;
using System.ServiceModel;

using Microsoft.IdentityModel.Tokens;

using System.IdentityModel.Selectors;

using Microsoft.IdentityModel.Tokens.Saml11;
using Microsoft.IdentityModel.Configuration;
using System.ServiceModel.Channels;

using System.ServiceModel.Description;

using System.Web.Configuration;

/// <summary>
/// Summary description for ActAsSecurityTokenServiceFactory
/// </summary>
public class ActAsSecurityTokenServiceFactory : WSTrustServiceHostFactory
{
public ActAsSecurityTokenServiceFactory()
{
}

public override ServiceHostBase CreateServiceHost(string constructorString, Uri[]
baseAddresses)
{
SecurityTokenServiceConfiguration config = new
SecurityTokenServiceConfiguration(WebConfigurationManager.AppSettings[Common.ActiveIssuer
Name]);

//Uri baseUri = baseAddresses.FirstOrDefault(a => a.Scheme == "http");
//if (baseUri == null)
// throw new InvalidOperationException("The STS should be hosted under http");

// Hard Coded value here so that it uses localhost instead of my FQDN domain
machine name for this sample

Uri baseUri = new Uri("https://localhost/CustomSTS/ActAsIssuer.svc");

// Set cert validation mode to none here since we're using simple localhost cert

config.CertificateValidationMode =
System.ServiceModel.Security.X509CertificateValidationMode.None;

config.RevocationMode =
System.Security.Cryptography.X509Certificates.X509RevocationMode.NoCheck;

config.TrustEndpoints.Add(new
ServiceHostEndpointConfiguration(typeof(IWSTrust13SyncContract),
GetWindowsCredentialsBinding(), baseUri.AbsoluteUri));

// Set the STS implementation class type
config.SecurityTokenService = typeof(ActAsCustomSecurityTokenService);

// Create a security token handler collection and then provide with a SAML11
security token

// handler and set the Audience restriction to Never

SecurityTokenHandlerCollection actAsHandlers = new
SecurityTokenHandlerCollection();

SamlllSecurityTokenHandler actAsTokenHandler = new SamlllSecurityTokenHandler();
// This is the token handler that will process on the ActAs token

actAsHandlers.Add(actAsTokenHandler);
actAsHandlers.Configuration.AudienceRestriction.AudienceMode =
AudienceUriMode.Never; // Here we ignore audience URI checks

//Set the appropriate issuer name registry

actAsHandlers.Configuration.IssuerNameRegistry = new ActAsIssuerNameRegistry();
// we ignored audience URI but we still make sure the token was signed by trusted issuer
(our Passive STS endpoint)

// Set the token handlers collection

config.SecurityTokenHandlerCollectionManager[SecurityTokenHandlerCollectionManager.Usage.
ActAs] = actAsHandlers;

}

WSTrustServiceHost host = new WSTrustServiceHost(config, baseAddresses);
return host;

static Binding GetWindowsCredentialsBinding()

{

WS2007HttpBinding binding = new WS2007HttpBinding();
binding.Security.Message.ClientCredentialType = MessageCredentialType.Windows;
binding.Security.Message.EstablishSecurityContext = false;
binding.Security.Transport.ClientCredentialType = HttpClientCredentialType.None;
binding.Security.Mode = SecurityMode.TransportWithMessageCredential;
binding.HostNameComparisonMode = HostNameComparisonMode.StrongWildcard;

return binding;

Let’s talk through the code that we just added. We have added a custom implementation of the
WIF provided WSTrustServiceHostFactory class which is responsible for providing instances of
WSTrustServiceHost class in managed hosting environments.

We've provided an empty default constructor. We then overrode the default implementation of
the CreateServiceHost method. This method basically programmatically sets the entire host
configuration values that we would normally set in the <Microsoft.ldentityModel> section of the
web.config file.

We expose an IWSTrust13SyncContract trust endpoint and pass in the binding instance that the
ASPX Relying Party application will use to authenticate against this Active endpoint. If you
review the GetWindowsCredentialsBinding() method you'll see that we just create a normal
ws2007HttpBinding() and will used Windows client credential. Basically we will authenticate the
ASPX RP app using the application pool identity once that call is authenticated then we proceed
to process on the token that ASPX RP app passes in.

We add a Saml11SecurityTokenHandler to handle the SAML 1.1 token that ACS passed back to
the ASXP RP app, then we add a custom IssuerNameRegistry class that is responsible for
returning an issuer name for the incoming signing certificate. Lastly this method simply returns
an instance of the WIF provided WSTrustServiceHost with all of these configurations applied.

Right-click on the App_Code folder of the https://localhost/CustomSTS/ project in the solution
explorer and select Add New Item.... Select a class file and name this class
ActAslssuerNameRegistry.cs then click the Add button. This is our custom IssuerNameRegistry,
again pulled as a sample from the WIF 4.0 SDK Web Sites and Identity Exercise #4 sample.

http://msdn.microsoft.com/en-us/library/microsoft.identitymodel.protocols.wstrust.wstrustservicehostfactory.aspx

Add New Item - https:/ /localhost,/CustomSTS/ ﬂﬂ

Installed Templates Sort by: | Default | = search Installed Templates ~ |

Yisual Basic
Wisual C# Qg ADO.MET Entiky Data Model Wisual C#

Type: Visual C#

An empty class declaration

Online Templates

@g ADOLMET EntikyObject Generator Wisual Ca#

@g ADOMET Self-Tracking Entity Generator Wisual C#
CﬁE— Class Wisual C#
@ Class Diagram Wisual C#
‘% DataSet Visual C#
<03 LING ko 501 Classes Visual Ca
\j Preprocessed Text Template Wisual C#
@ Report Wisual Ca
'?.EI Report Wizard Wisual C#
% Texk File Visual C#
\j Text Template Wisual C#
L g WCF Data Service visual C#
T—j Sequence Diagram Wisual C#

Marme: |ActAsIssuerNameRegistry.cs ™ Place code in separate file

™ select master page

8. Replace the default code in ActAslssuerNameRegistry.cs with the following code:

Microsoft Developer & Platform Evangelism
Copyright (c) Microsoft Corporation. All rights reserved.

THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE.

The example companies, organizations, products, domain names,

e-mail addresses, logos, people, places, and events depicted

herein are fictitious. No association with any real company,

organization, product, domain name, email address, logo, person,

places, or events is intended or should be inferred.

using System;

using System.IdentityModel.Tokens;
using Microsoft.IdentityModel.Tokens;
using System.Web.Configuration;

/// <summary>

/// IssuerNameRegistry that validates the incoming token in RST.ActAs parameter.
/// </summary>

public class ActAsIssuerNameRegistry : IssuerNameRegistry

/17
/17
/17
/17
/17
/17
/17

<summary>

Overrides the base class. Validates the given issuer token.

For an incoming SAML token the issuer token is
Certificate that signed the SAML token.
</summary>

<param name="securityToken">Issuer token to be

<returns>Friendly name representing the Issuer.

public override string GetIssuerName(SecurityToken

{

policy.

X509SecurityToken x509Token = securityToken as
if (x509Token != null)

{

the

validated.</param>
</returns>
securityToken)

X509SecurityToken;

// Warning: This sample does a simple compare of the Issuer Certificate
// to a subject name. This is not appropriate for production use.
// Check your validation policy and authenticate issuers based off the

if (String.Equals(x509Token.Certificate.SubjectName.Name,
WebConfigurationManager.AppSettings[Common.SigningCertificateName]))

return x509Token.Certificate.SubjectName.Name;

}

throw new SecurityTokenException("Untrusted issuer.");

This method just returns a friendly name that represents the issuer of tokens provided by this ws-
trust active endpoint of our CustomSTS project. You can see that we just return the subject name of
the signing certificate as this issuer name.

9. Right-click on the App_Code folder of the https://localhost/CustomSTS/ project in the solution
explorer and select Add New Item.... Select a class file and name this class
ActAsCustomSecurityTokenService.cs then click the Add button.

Add New Item - https:/ /localhost,/CustomSTS/ ﬂﬂ

Sort by |DeFauIt j Search Installed Templates P|

Type: Visual C#

Installed Templates

Yisual Basic

Wisual C# Qg ADO.MET Entiky Data Model Wisual C#
- An empty class declaration

Online Templates

@g ADOLMET EntikyObject Generator Wisual Ca#

% ADOMET Self-Tracking Entity Generator Wisual C#
CﬁE— Class Wisual C#
@ Class Diagram Wisual C#
‘% Dataset Visual C#
"—J-_ LING to SOL Classes Wisual C#
\j Preprocessed Text Template Wisual Ca
\ﬁ Report Wisual Ca
'_-T.EI Report Wizard Wisiual C#
% Texk File Visual C#
\j Text Template Wisual C#
__ i WCF Data Service Visual C#
T—j Sequence Diagram Wisual C#

Marme: |ActAsCustomSecurityTokenServicelcs ™ Place code in separate file

™ Select master page

10. Replace the default code in the ActAsCustomSecurityTokenService.cs with the following code:

Microsoft Developer & Platform Evangelism
Copyright (c) Microsoft Corporation. All rights reserved.

THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE.

The example companies, organizations, products, domain names,

e-mail addresses, logos, people, places, and events depicted

herein are fictitious. No association with any real company,

organization, product, domain name, email address, logo, person,

places, or events is intended or should be inferred.

using System.Ling;

using System.Security.Cryptography.X509Certificates;
using Microsoft.IdentityModel.Claims;

using Microsoft.IdentityModel.Configuration;

using Microsoft.IdentityModel.SecurityTokenService;
using Microsoft.IdentityModel.Protocols.WSTrust;
using System.Web.Configuration;

/// <summary>

/// Implementation of a Custom SecurityTokenService.
/// </summary>
public class ActAsCustomSecurityTokenService : SecurityTokenService
{
static readonly string SigningCertificateName =
WebConfigurationManager.AppSettings[Common.SigningCertificateName];
static readonly string EncryptingCertificateName =
WebConfigurationManager.AppSettings[Common.EncryptingCertificateName];

/// <summary>
/// Creates an instance of ActAsCustomSecurityTokenService.
/// </summary>
/// <param name="configuration">Configuration for this SecurityTokenService.</param>
public ActAsCustomSecurityTokenService(SecurityTokenServiceConfiguration
configuration)
: base(configuration)
{
// Setup our certificate the STS is going to use to sign the issued tokens
configuration.SigningCredentials = new
X509SigningCredentials(CertificateUtil.GetCertificate(StoreName.My,
StoreLocation.LocalMachine, SigningCertificateName));

}

/// <summary>
/// This method returns the configuration for the token issuance request. The
configuration
/// 1is represented by the Scope class. In our case, we are only capable to issue a
token for a
/// single RP identity represented by CN=Repro Signing Cert.
/// </summary>
/// <param name="principal”>The caller's principal</param>
/// <param name="request">The incoming RST</param>
/// <returns></returns>
protected override Scope GetScope(IClaimsPrincipal principal, RequestSecurityToken
request)
{
// Create the scope using the request AppliesTo address and the STS signing
certificate
Scope scope = new Scope(request.AppliesTo.Uri.ToString(),
SecurityTokenServiceConfiguration.SigningCredentials);

// We only support a single RP identity represented by CN=localhost. Set the RP
certificate for encryption
scope.EncryptingCredentials = new X509EncryptingCredentials(
CertificateUtil.GetCertificate(StoreName.My,

StorelLocation.LocalMachine,
EncryptingCertificateName));

// Set the replyTo address. In WS-Federation passive case this value is used as
the endpoint

// where the user is redirected to.

scope.ReplyToAddress = scope.AppliesToAddress;

return scope;

/// <summary>
/// This method returns the content of the issued token. The content is represented
as a set of
/// IClaimIdentity instances, each instance corresponds to a single issued token.
/// </summary>
/// <param name="scope">The scope that was previously returned by GetScope
method.</param>
/// <param name="principal”>The caller's principal.</param>
/// <param name="request">The incoming RST.</param>
/// <returns></returns>
protected override IClaimsIdentity GetOutputClaimsIdentity(IClaimsPrincipal
principal, RequestSecurityToken request, Scope scope)
{
IClaimsIdentity callerIdentity = (IClaimsIdentity)principal.Identity;
ClaimsIdentityCollection outputClaimsCollection = new ClaimsIdentityCollection();

// Create new identity and copy content of the caller's identity into it
(including the existing delegate chain)

IClaimsIdentity outputIdentity = new ClaimsIdentity();

CopyClaims(callerIdentity, outputIdentity);

// If there is an ActAs token in the RST, add and return the claims from it as
the top-most identity

// and put the caller's identity into the Delegate property of this identity.

if (request.ActAs != null)

{
IClaimsIdentity actAsIdentity = new ClaimsIdentity();

CopyClaims(request.ActAs.GetSubject()[@], actAsIdentity);

// Find the last delegate in the actAs identity
IClaimsIdentity lastActingVia = actAsIdentity;
while (lastActingVia.Actor != null)

{
}

// Put the caller's identity as the last delegate to the ActAs identity
lastActingVia.Actor = outputIdentity;

lastActingVia = lastActingVia.Actor;

// Return the actAsIdentity instead of the caller's identity in this case
outputIdentity = actAsIdentity;

}

// Add two more claims specific to this WS-Trust Active endpoint

// that the claims aware ASPX web app can process on.

// You could insert additional business logic to process on the incoming claims

// to determine which additional claims you want to add to the token

outputIdentity.Claims.Add(new
Claim("http://localhost/CustomSts/ActiveEndpoint/EmailClaim”,
"mybogusemail@hotmail.com"));

outputIdentity.Claims.Add(new
Claim("http://localhost/CustomSts/ActiveEndpoint/CustomClaim”, "any value"));

return outputIdentity;

}

/// <summary>
/// Do a deep-copy of IClaimsIdentity except the issuer.

/// </summary>
/// <param name="srcIdentity">Source Identity.</param>
/// <param name="dstIdentity">Destination Identity.</param>
private void CopyClaims(IClaimsIdentity srcIdentity, IClaimsIdentity dstIdentity)
{
foreach (Claim claim in srcIdentity.Claims)
{
// We don't copy the issuer because it is not needed in this case. The STS
always issues claims
// using its own identity.
Claim newClaim = new Claim(claim.ClaimType, claim.Value, claim.ValueType);

// copy all claim properties
foreach (string key in claim.Properties.Keys)

{
¥

newClaim.Properties.Add(key, claim.Properties[key]);

// add claim to the destination identity
dstIdentity.Claims.Add(newClaim);

}

// Recursively copy claims from the source identity delegates
if (srcIdentity.Actor != null)

{
dstIdentity.Actor = new ClaimsIdentity();

CopyClaims(srcIdentity.Actor, dstIdentity.Actor);

You will see that this ActAsCustomSecurityTokenService class is very similar to our WS-Federation
Passive endpoint implementation. The only difference here is that our Active endpoint adds two
more claims to the token that are specific to this CustomSTS Active Endpoint.

11. There is one more class that we need to add to our CustomSTS App_Code folder. If you look
back at the ActAslssuer.svc file you see we have configured the Service with the value:
Service="ActAsCustomSecurityTokenServiceConfiguration". We need to add that class
implementation as well. Right-click on the App_Code folder of the https://localhost/CustomSTS/
project in the solution explorer and select Add New Item.... Select a class file and name this class
ActAsCustomSecurityTokenServiceConfiguration.cs then click the Add button.

Add New Item - https:/ /localhost/CustomSTS,/ ﬂﬂ

Installed Templates

Sort by | Default

Search Installed Templates 2 |

Visual Basic

" . . Type: visual C#
Wisual C# Qg ADD,MET Entity Data Model Wisual C#

An empty class declaration

Online Templates

@g ADOCLMET EntityObject Generator Wisual C#

@g ADOL.MET Self-Tracking Entity Generator Wisual Ca
CﬁE— Class Wisual C#
@ Class Diagram Wisual C#
‘% Dataset Visual C#
"—J-_ LING to SQL Classes ‘Wisual Ca
\j Preprocessed Text Template Wisual C#
%EI Report Wisual C#
'.-T.EI Repart Wizard Wisual C#
% Text File Wisual Ca#
\j Text Template Wisual C#
__ Ig' WCF Data Service Visual C#
T—j Sequence Diagram Wisual C#

Tame: |ActnscustomSecurityTokenServiceConfigurationlcs I Place code in separate file

//

I Select master page

12. Replace the default code found in ActAsCustomSecurityTokenServiceConfiguration.cs with the
following contents. You can see that this class just lines up our
ActAsCustomSecurityTokenService as the class to be loaded when processing incoming requests
to the endpoint.

Microsoft Developer & Platform Evangelism
Copyright (c) Microsoft Corporation. All rights reserved.

THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE.

The example companies, organizations, products, domain names,

e-mail addresses, logos, people, places, and events depicted

herein are fictitious. No association with any real company,

organization, product, domain name, email address, logo, person,

places, or events is intended or should be inferred.

using Microsoft.IdentityModel.Configuration;

/// <summary>

/// Summary description for CustomSecurityTokenServiceConfiguration

/// </summary>

class ActAsCustomSecurityTokenServiceConfiguration : SecurityTokenServiceConfiguration

{

/// <summary>

/// Creates an instance of CustomBookStoreSecurityTokenServiceConfiguration.
/// </summary>

public ActAsCustomSecurityTokenServiceConfiguration()

{ SecurityTokenService = typeof(ActAsCustomSecurityTokenService);
}
}

13. Next open the Common.cs code file in the CustomSTS App_Code folder and define the Common
class as follows. This class is used to grab settings out of the web.config file used to configure
our CustomSTS.

public static class Common

¢ public const string PassiveIssuerName = "PassiveIssuerName";

public const string ActiveIssuerName = "ActiveIssuerName";
public const string SigningCertificateName = "SigningCertificateName";
public const string EncryptingCertificateName = "EncryptingCertificateName";

}

14. We need to make sure that the Passive Security Token Service uses an IssuerName of
PassivelssuerName application setting. In the CustomSTS App_Code folder open the
CustomSecurityTokenServiceConfiguration.cs code file and in the class constructor make sure
we load the Common.PassivelssuerName:

/// <summary>
/// CustomSecurityTokenServiceConfiguration constructor.
/// </summary>
public CustomSecurityTokenServiceConfiguration()
: base(WebConfigurationManager.AppSettings[Common.PassiveIssuerName],
new X509SigningCredentials(CertificateUtil.GetCertificate(
StoreName.My, StorelLocation.LocalMachine,
WebConfigurationManager.AppSettings[Common.SigningCertificateName])
))
{
this.SecurityTokenService = typeof(CustomSecurityTokenService);
}

15. Build the solution and make sure it compiles without any errors

Step 3 - Update IssuerName application settings
We have two token issuer endpoints in our CustomSTS web application. We need to add application
settings to the web.config to specify the issuer name for both of those endpoints.

1. Inthe https://localhost/CustomSTS/ web application open up the web.config file

2. At the top of this config file change the appSettings to look like this:
NOTE: Your implementation will have a different FederationMetadatalocation value to your
own custom Azure ACS namespace

<appSettings>
<add key="PassiveIssuerName" value="PassiveSigninSTS" />
<add key="ActiveIssuerName" value="ActiveSigninSTS" />
<add key="SigningCertificateName" value="CN=Repro Signing Cert" />
<add key="EncryptingCertificateName" value="CN=Repro Encryption Cert" />
<add key="FederationMetadatalLocation" value="https://foust-repro-service-
namespace.accesscontrol.windows.net/FederationMetadata/2007-06/FederationMetadata.xml "

/>
</appSettings>

You can see here that we specify the IssuerName string for the Passive and Active STS endpoints as well
as properly set the signing and encryption certificate used by the CustomSTS.

Step 4 - Copy signing certificate to Trusted People store

The Active endpoint of our CustomSTS uses the default Saml11SecurityTokenHandler class to process
incoming SAML 1.1 tokens. This class defaults to a CertificateValidationMode of PeerOrChainTrust. If
you want to change this to None or disable the revocation setting you will have to create a custom
certificate validator class and set that for the Saml11SecurityTokenHandler class in the
ActAsSecurityTokenServiceFactory.CreateServiceHost() method. See example validator class here. For
the walkthrough I'll just accept the default values, PeerOrChainTrust, which requires that we copy the
CN=Repro Signing Cert into the LocalMachine -> Trusted People store.

1. Open up the certificate management console

2. Find the Repro Signing Cert in the Local Computer -> Personal store

3. Right-click on that certificate and select Copy:

Consolel - [Console Root' Certificates {(Local Computer)iPersonal’,Certificates] ;lglﬂ
File — Action View Favorites Window Help == x|
&9 1@ 4= XE = HIE

| Caonsole Root il Issued To = ‘l Actions

= H Certificates {Local Computer)
=l 7 Personal
| Certificates j

“vf_pJRepro Encryption Cert

El F!_euru:- Signing Cerk

Copies the current selection, All Tasks »

_i Certificates FS
w

Qpen Mare Actions |

Zut

Copy
Delete

Propetties

Help

4. Then navigate to Local Computer -> Trusted People store
5. Right-click on the Certificates folder and select Paste to copy this certificate from the Personal
store to the Trusted People store:

http://msdn.microsoft.com/en-us/library/ms733806(VS.85).aspx

E Consolel - [Console Root', Certificates (Local Compul

E File Action Yiew Favorites Window Help

&= @ 8|6 = | HE

| Console Roak
=l H Certificates (Local Computer)
= || Personal

| Certificates

= || Trusked Roak Certification Autharities
| Certificates
| Enterprise Trust
| Intermediate Certification Authaorities
| Trusted Publishers
| Unktrusted Certificates
_| Third-Party Rook Certification Authorities
= || Truskted People

Other People All Tasks ’
J LocalMachine View »
Operations Mar
Remoke Deskko|
Certificate Enra Mew Taskpad View. ..
Srnark Card Tru:
SMS Paske
Trusted Devices Refresh

windows Live I Export List,.,

Mew window From Here

HEHEEBBBBK

Help

Phase Summary

At this point we have a CustomSTS that exposes a WS-Federation passive endpoint, which uses a series
of redirects to ACS and Live ID to authenticate the user and issue a token. The CustomSTS now also
exposes a WS-Trust active endpoint (at ActAslssuer.svc). The passive endpoint is mostly configured
through the web.config file however the active endpoint is completely implemented through code using
the ActAsSecurityTokenServiceFactory, ActAsCustomSecurityTokenService and other supporting classes.

The key take away from this phase is that we have two different WSTrustServiceHostFactory objects to
respond to the Passive and then the Active endpoint. Both endpoints end up adding individual claims
that will be processed by the front end ASPX relying party application. The CustomSTS web app is now
complete at this point. We still have to build the claims aware backend WCF Service and then configure
the client ASPX relying party app to call to that claims aware WCF RP service.

Phase 3 - Building Claims Aware WCF service which receives the ActAs token

In this phase we will build the backend Claims Aware WCF relying party application. This service will
require issued tokens from the Active endpoint of our CustomSTS service. We will not use the
Federation Utility wizard to configure WIF, but instead do it manually by simply making changes to the

web.config file. In the config file we expose an endpoint for this WCF service that uses the
IssuedTokenOverTransport authentication mode which basically tells the client to go authenticate
against a specific issuer, and once they are authenticated they can call the WCF service over transport
security.

This was another challenging piece of the entire application because we have to use customBindings
instead of the normal ws2007FederationHttpBinding. When using customBindings the settings are
pretty delicate and there is practically no documentation on what is required to support federation that
still involves WIF.

To make up for the lack of documentation, in the web.config file | have commented 5 additional
endpoints and their customBinding configurations required to expose this WCF RP app using all of the
other IssuedToken* authentication types, some including secure conversations and others without. You
can comment out the current endpoint, uncomment one of the other endpoints, then update the client
service reference and the call should still work. You’ll see this in the web.config file of our claims aware
W(CF application.

Step 1 - Add the Backend Claims Aware WCF Service to the Solution

1. Inour open FederatelLivelD solution, select the File menu -> Add -> New Web Site...

2. Select the Claims-aware WCF Service project template

3. Enter the address https://localhost/ClaimsAwareWCF/ and click OK button to add this project to
our solution:

Add New Web Site 2| x|
Recent Templates | HET Framework 4 | sort by |Defaul R | Search Installed Templates P |
Installed Templates

q)) Type: Visual C#
Visual Basic = ASP.MET Web Site Wisual C#
=C Claims-aware WCF Service
Visual C#
% ASP.MNET Empty Web Site Wisual C&
Online Templates
ASP.MET Dynamic Daka Entities Web Site Wisual C#
ASP.MET Dynamic Daka Ling ko SQL Web Site Wisual C#
WCF Service Wisual C#
ASP.MET Reports Web Site Wisual C&
T ASP.NET Security Token Service Wieb Site isual C&
N Clairms-aware ASP.NET Weh Site Wisual C#
" Claims-aware WCF Service Wisual C#
* W Security Token Service Wisual C#
ASP.MET Crystal Reports Web Site Wisual C#
Wb location: |HTTP j | https:/localhost)ClaimsAwar e CF ﬂ Browse. .,

4. Open up the IService.cs code behind file and replace the code there with the following. This
code just exposes one operation called GetClaims that just enumerates the list of claims that
this service received from the incoming call from our ASPX RP app:

// THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF
// ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A

// PARTICULAR PURPOSE.

// Copyright (c) Microsoft Corporation. All rights reserved.

using System.Runtime.Serialization;
using System.ServiceModel;
using System.Collections.Generic;

namespace ClaimsAwareWCF

{

// NOTE: If you change the interface name "IService" here,

// you must also update the reference to "IService" in Web.config.
[ServiceContract(Namespace = "urn:federateliveid:samples")]

public interface IService

{

[OperationContract]
List<ViewClaim> GetClaims();

}

// Use a data contract as illustrated in the sample below to
// add composite types to service operations.
[DataContract(Namespace = "urn:federateliveid:samples")]
public class ViewClaim

{
[DataMember]

public string ClaimType { get; set; }

[DataMember]
public string Value { get; set; }

[DataMember]
public string Issuer { get; set; }

[DataMember]
public string OriginalIssuer { get; set; }

5. Open up the Service.cs code file in the App_Code folder and replace its entire contents with the
following code which implements the interface and GetClaims method:

// THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF
// ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A

// PARTICULAR PURPOSE.

// Copyright (c) Microsoft Corporation. All rights reserved.

using System.Threading;

using Microsoft.IdentityModel.Claims;
using System.Ling;

using System.Collections.Generic;

namespace ClaimsAwareWCF

{
// NOTE: If you change the class name "Service" here, you
// must also update the reference to "Service" in Web.config
// and in the associated .svc file.
public class Service : IService
{
public List<ViewClaim> GetClaims()
{
var id = Thread.CurrentPrincipal.Identity as IClaimsIdentity;
return (from c in id.Claims
select new ViewClaim
{
ClaimType = c.ClaimType,
Value = c.Value,
Issuer = c.Issuer,
Originallssuer = c.OriginalIssuer
}).ToList();
}
}
}

6. Go into IIS manager. Find the ClaimsAwareWCF service. Double-click on the Authentication
feature and then configure the following authentication mode settings:

Anonymous Authentication — Enabled
ASP.NET Impersonation — Disabled
Basic Authentication — Disabled
Forms Authentication — Disabled
Windows Authentication - Enabled

Step 2 - Populate the Claims Aware WCF RP app web.config file

At this point we need to configure this WCF service to use WIF and federate against our CustomSTS
Active endpoint. This normally requires the step to add STS Reference against a FederationMetadata.xml
file. The problem with this is that our CustomSTS FederationMetada.xml file is currently signed to
federate against ACS. In this case we don’t want to go to ADFS. There may be a way to manually modify
the FederationMetadata.xml file to expose a RoleDescriptor element with type
xsi:type="fed:SecurityTokenServiceType", and then a second RoleDescriptor element with type
xsi:type="fed:ApplicationServiceType", but | ran out of time to investigate if the FedUtility wizard can
parse two RoleDescriptor elements and properly configure the RP app to the proper STS endpoint.
Instead we will simply configure this WCF RP app to use WIF and our CustomSTS manually by modifying
the web.config file.

1. Open up the web.config file for our https://localhost/ClaimsAwareWCF/ project and replace the
entire contents with the following configuration:

Backend claims aware WCF service web.config file

<?xml version="1.0" encoding="UTF-8"?>

<l--
Note: As an alternative to hand editing this file you can use the
web admin tool to configure settings for your application. Use
the Website->Asp.Net Configuration option in Visual Studio.
A full list of settings and comments can be found in
machine.config.comments usually located in
\Windows\Microsoft.Net\Framework\v2.x\Config

-->

<configuration>

<configSections>
<section name="microsoft.identityModel™
type="Microsoft.IdentityModel.Configuration.MicrosoftIdentityModelSection,
Microsoft.IdentityModel, Version=3.5.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35" />
</configSections>
<connectionStrings />
<location path="FederationMetadata">
<system.web>
<authorization>
<allow users="*" />
</authorization>
</system.web>
</location>
<system.web>
<!--
Set compilation debug="true" to insert debugging
symbols into the compiled page. Because this
affects performance, set this value to true only
during development.
-->
<compilation debug="true" targetFramework="4.0">
<assemblies>

<add assembly="Microsoft.IdentityModel, Version=3.5.0.0, Culture=neutral,
PublicKeyToken=31BF3856AD364E35" />

</assemblies>
</compilation>
<!--
The <authentication> section enables configuration
of the security authentication mode used by
ASP.NET to identify an incoming user.
-->
<authentication mode="Windows" />
<!--

The <customErrors> section enables configuration

of what to do if/when an unhandled error occurs
during the execution of a request. Specifically,

it enables developers to configure html error pages
to be displayed in place of an error stack trace.

<customErrors mode="RemoteOnly" defaultRedirect="GenericErrorPage.htm">
<error statusCode="403" redirect="NoAccess.htm" />
<error statusCode="404" redirect="FileNotFound.htm" />
</customErrors>
-->
<pages>
<controls>
<add tagPrefix="asp" namespace="System.Web.UI" assembly="System.Web.Extensions,
Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" />
</controls>
</pages>
<identity impersonate="false" />

</system.web>
<system.web.extensions>
<scripting>
<webServices>

<!--
Uncomment this section to enable the authentication service. Include
requireSSL="true" if appropriate.

-->

<!--

<authenticationService enabled="true" requireSSL = "true|false"/>

-->

<!--
Uncomment these lines to enable the profile service, and to choose the
profile properties that can be retrieved and modified in ASP.NET AJAX
applications.

-->

<!--

<profileService enabled="true"

readAccessProperties="propertynamel,propertyname2”
writeAccessProperties="propertynamel,propertyname2" />

-->
<l--
Uncomment this section to enable the role service.
-->
<l--
<roleService enabled="true"/>
-->

</webServices>

<!--
<scriptResourceHandler enableCompression="true" enableCaching="true" />
-->
</scripting>
</system.web.extensions>
<microsoft.identityModel>
<service name="ClaimsAwareWCF.Service">
<audienceUris>
<add value="https://localhost/ClaimsAwareWCF/Service.svc" />
</audienceUris>
<issuerNameRegistry
type="Microsoft.IdentityModel.Tokens.ConfigurationBasedIssuerNameRegistry,
Microsoft.IdentityModel, Version=3.5.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35">
<trustedIssuers>
<add thumbprint="70C883F888C017B3FB02B9887F7835794473CO6F" name="CN=Repro
Signing Cert" />
</trustedIssuers>
</issuerNameRegistry>
<serviceCertificate>
<certificateReference x509FindType="FindByThumbprint"
findValue="7DD17B7807EDA96F1DDD687EB420A097294FOA77" storelLocation="LocalMachine"
storeName="My" />
</serviceCertificate>
<certificateValidation certificateValidationMode="None" revocationMode="NoCheck" />
</service>
</microsoft.identityModel>
<system.serviceModel>
<services>
<service name="ClaimsAwareWCF.Service"
behaviorConfiguration="ClaimsAwareWCF.ServiceBehavior">
<!-- IssuedToken Endpoint: -->
<!-- <endpoint address="http://localhost/ClaimsAwareWCF/Service.svc"
binding="customBinding" contract="ClaimsAwareWCF.IService"
bindingConfiguration="CustomBindingConfiguration_IssuedToken" />-->

<!-- IssuedTokenOverTransport Endpoint: -->

<endpoint address="https://localhost/ClaimsAwareWCF/Service.svc"
binding="customBinding" contract="ClaimsAwareWCF.IService"
bindingConfiguration="CustomBindingConfiguration_IssuedTokenOverTransport" />

<!-- IssuedTokenOverTransport SecureConversation Endpoint: -->

<!-- <endpoint address="https://localhost/ClaimsAwareWCF/Service.svc"
binding="customBinding" contract="ClaimsAwareWCF.IService"
bindingConfiguration="CustomBindingConfiguration_IssuedTokenOverTransport_SecureConversat
ion" />-->

<!-- IssuedTokenForCertificate Endpoint: -->

<!-- <endpoint address="http://localhost/ClaimsAwareWCF/Service.svc"
binding="customBinding" contract="ClaimsAwareWCF.IService"
bindingConfiguration="CustomBindingConfiguration_IssuedTokenForCertificate" />-->

<!-- IssuedTokenForSslNegotiated Endpoint: -->

<!-- <endpoint address="http://localhost/ClaimsAwareWCF/Service.svc"
binding="customBinding" contract="ClaimsAwareWCF.IService"
bindingConfiguration="CustomBindingConfiguration_IssuedTokenForSslNegotiated" />-->

<!-- IssuedTokenForSslNegotiated SecureConversation Endpoint: -->

<!l-- <endpoint address="http://localhost/ClaimsAwareWCF/Service.svc"
binding="customBinding" contract="ClaimsAwareWCF.IService"
bindingConfiguration="CustomBindingConfiguration_IssuedTokenForSslNegotiated_SecureConver
sation" />-->

<!--Commented out by FedUtil-->
<!--<endpoint address="" binding="wsHttpBinding"
contract="ClaimsAwareWCF.IService"><!- -
Upon deployment, the following identity element should be removed or replaced
to reflect the
identity under which the deployed service runs. If removed, WCF will infer
an appropriate identity
automatically.
- -><identity><dns value="localhost" /></identity></endpoint>-->
<endpoint address="mex" binding="mexHttpBinding" contract="IMetadataExchange" />

</service>
</services>
<behaviors>
<serviceBehaviors>
<behavior name="ClaimsAwareWCF.ServiceBehavior">
<!-- Behavior extension to make the service claims aware -->
<federatedServiceHostConfiguration name="ClaimsAwareWCF.Service" />
<!-- To avoid disclosing metadata information, set the value below to false and

remove the metadata endpoint above before deployment -->
<serviceMetadata httpGetEnabled="true" httpsGetEnabled="true" />
<!-- To receive exception details in faults for debugging purposes, set the
value below to true. Set to false before deployment to avoid disclosing exception
information -->
<serviceDebug includeExceptionDetailInFaults="true" />
<serviceCredentials>
<!--Certificate added by FedUtil. Subject='CN=localhost', Issuer='CN=Repro
Root Authority'.-->
<serviceCertificate findValue="F4323E79A8A50833C45E79547254564C8CA5601F"
storeLocation="LocalMachine" storeName="My" x509FindType="FindByThumbprint" />
</serviceCredentials>
<useRequestHeadersForMetadataAddress />
</behavior>
</serviceBehaviors>
</behaviors>
<extensions>
<behaviorExtensions>
<!-- This behavior extension will enable the service host to be Claims aware -->
<add name="federatedServiceHostConfiguration"
type="Microsoft.IdentityModel.Configuration.ConfigureServiceHostBehaviorExtensionElement,
Microsoft.IdentityModel, Version=3.5.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35" />
</behaviorExtensions>
</extensions>
<bindings>
<customBinding>
<binding name="CustomBindingConfiguration_IssuedToken">
<security authenticationMode="IssuedToken">
<issuedTokenParameters keyType="SymmetricKey" tokenType="http://docs.oasis-
open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV1.1">
<issuer address="https://localhost/CustomSTS/ActAsIssuer.svc"
binding="ws2007HttpBinding" bindingConfiguration="IssuedTokenBinding" />
<issuerMetadata address="https://localhost/CustomSTS/ActAsIssuer.svc/mex"

/>

</issuedTokenParameters>
</security>
<textMessageEncoding />
<httpTransport />
</binding>
<binding name="CustomBindingConfiguration_IssuedTokenOverTransport">
<security authenticationMode="IssuedTokenOverTransport">
<issuedTokenParameters keyType="SymmetricKey" tokenType="http://docs.oasis-
open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV1.1">
<issuer address="https://localhost/CustomSTS/ActAsIssuer.svc"
binding="ws2007HttpBinding" bindingConfiguration="IssuedTokenBinding" />
<issuerMetadata address="https://localhost/CustomSTS/ActAsIssuer.svc/mex"
/>
</issuedTokenParameters>
</security>
<textMessageEncoding />
<httpsTransport />
</binding>
<binding
name="CustomBindingConfiguration_IssuedTokenOverTransport_SecureConversation">
<security authenticationMode="SecureConversation™
messageSecurityVersion="WSSecurityl1WSTrust13WSSecureConversationl3WSSecurityPolicyl2Basi
cSecurityProfilel@" requireSecurityContextCancellation="false">
<secureConversationBootstrap authenticationMode="IssuedTokenOverTransport"
messageSecurityVersion="WSSecurityl1WSTrust13WSSecureConversationl3WSSecurityPolicyl2Basi
cSecurityProfilelo">
<issuedTokenParameters keyType="SymmetricKey" tokenType="http://docs.oasis-
open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV1.1">
<issuer address="https://localhost/CustomSTS/ActAsIssuer.svc"
binding="ws2007HttpBinding" bindingConfiguration="IssuedTokenBinding" />
<issuerMetadata address="https://localhost/CustomSTS/ActAsIssuer.svc/mex"
/>
</issuedTokenParameters>
<localClientSettings cacheCookies="true" detectReplays="true"
replayCacheSize="900000" maxClockSkew="00:05:00" replayWindow="00:05:00"
sessionKeyRenewalInterval="10:00:00" sessionKeyRolloverInterval="00:05:00"
reconnectTransportOnFailure="true" timestampValidityDuration="00:05:00"
cookieRenewalThresholdPercentage="60" />
<localServiceSettings detectReplays="true" issuedCookielLifetime="10:00:00"
maxStatefulNegotiations="128" replayCacheSize="900000" maxClockSkew="00:05:00"
negotiationTimeout="00:01:00" replayWindow="00:05:00" inactivityTimeout="00:02:00"
sessionKeyRenewalInterval="15:00:00" sessionKeyRolloverInterval="00:05:00"
reconnectTransportOnFailure="true" maxPendingSessions="128" maxCachedCookies="1000"
timestampValidityDuration="00:05:00" />
</secureConversationBootstrap>
</security>
<textMessageEncoding />
<httpsTransport />
</binding>
<binding name="CustomBindingConfiguration_IssuedTokenForCertificate">
<security authenticationMode="IssuedTokenForCertificate"
requireDerivedKeys="true" securityHeaderLayout="Strict" includeTimestamp="true"
keyEntropyMode="CombinedEntropy"
messageSecurityVersion="WSSecurityl1WSTrust13WSSecureConversationl3WSSecurityPolicyl2Basi
cSecurityProfilel®" requireSignatureConfirmation="true">
<issuedTokenParameters keyType="SymmetricKey" tokenType="http://docs.oasis-
open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV1.1">

<issuer address="https://localhost/CustomSTS/ActAsIssuer.svc"
binding="ws2007HttpBinding" bindingConfiguration="IssuedTokenBinding">
<identity>
<certificateReference storelLocation="LocalMachine" storeName="My"
findValue="CN=1localhost" />
</identity>
</issuer>
<issuerMetadata address="https://localhost/CustomSTS/ActAsIssuer.svc/mex"
/>
</issuedTokenParameters>
</security>
<textMessageEncoding />
<httpTransport />
</binding>
<binding name="CustomBindingConfiguration_IssuedTokenForSslNegotiated">
<security authenticationMode="IssuedTokenForSslNegotiated">
<issuedTokenParameters keyType="SymmetricKey" tokenType="http://docs.oasis-
open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV1.1">
<issuer address="https://localhost/CustomSTS/ActAsIssuer.svc"
binding="ws2007HttpBinding" bindingConfiguration="IssuedTokenBinding" />
<issuerMetadata address="https://localhost/CustomSTS/ActAsIssuer.svc/mex"
/>
</issuedTokenParameters>
</security>
<textMessageEncoding />
<httpTransport />
</binding>
<binding
name="CustomBindingConfiguration_IssuedTokenForSslNegotiated_SecureConversation">
<security authenticationMode="SecureConversation™
requireSecurityContextCancellation="false">
<secureConversationBootstrap
authenticationMode="IssuedTokenForSslNegotiated">
<issuedTokenParameters keyType="SymmetricKey" tokenType="http://docs.oasis-
open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV1.1">
<issuer address="https://localhost/CustomSTS/ActAsIssuer.svc"
binding="ws2007HttpBinding" bindingConfiguration="IssuedTokenBinding" />
<issuerMetadata address="https://localhost/CustomSTS/ActAsIssuer.svc/mex"
/>
</issuedTokenParameters>
</secureConversationBootstrap>
</security>
<textMessageEncoding />
<httpTransport />
</binding>
</customBinding>
<Ws2007HttpBinding>
<binding name="IssuedTokenBinding">
<security mode="TransportWithMessageCredential">
<message clientCredentialType="Windows" establishSecurityContext="false" />
</security>
</binding>
</ws2007HttpBinding>
</bindings>
</system.serviceModel>
</configuration>

NOTE: The configuration above again contains extra customBindings and commented out endpoints
that allow you to support other authentication modes such as IssuedToken,
IssuedTokenForCertificate, IssuedTokenOverTransport, etc.

2. After adding in the above configurations to your claims aware WCF web.config file, for your
environment you will want to make sure that you have changed the
<microsoft.ldentityModel><service><issuerNameRegistry><trustedlssuers><add> elements
thumbprint attribute so that it matches the thumbprint of your Repro Signing Cert certificate. Then
you will want to make sure that the
<microsoft.identityModel><service><serviceCertificate><certificateReference> element references
the thumbprint value of your Repro Encryption Cert certificate. Lastly you’ll have to do the same for
the
<system.serviceModel><behaviors><serviceBehaviors><behavior><serviceCredentials><serviceCerti
ficate> element’s findValue attribute to be the thumbprint of your localhost certificate.

Phase 4 - Update the Claims Aware ASXP app to call our CustomSTS active
endpoint

Our CustomSTS is now configured and complete. Our backend claims aware WCF service is also
configured and complete. The last step is to update our front end claims aware ASPX web application so
that it calls to the backend WCF service and then displays the list of claims returned in the token from
the Passive endpoint and the list of claims that are available in the execution of the backend WCF
Service method.

Step 1 - Add Service reference to WCF Service from ASPX Relying Party app

1. Right-click on the https://localhost/ClaimsAwareASPX/ app in the solution explorer and select
Add Service Reference...

2. Enter the path to our claims aware WCF service in the Address text box:
https://localhost/ClaimsAwareWCF/Service.svc then click the OK button

3. Click the Advanced button at the bottom of this dialog box.

To see a lisk of available services on a specific server, enter a service URL and click Go, To browse Far
available services, click Discover,

Address;

kbps: [flocalhosk/ClaimsdwaresWCF | Service, sy j (E0 || Discover |v|

Services: Operations:

@) -ﬂ Service

Select a service conbrack ko wiew ks operations,

1 servicel(s) Found at address 'https:fflocalhost ! ClaimsawareWCF[Service, swc',

Mamespace:

IServiceReFerencel

Advanced. ., | | Ik I Zancel

4

4. Change the collection type to System.Collections.Generic.List and click OK. We do this because
our WCF RP app has a method call GetClaims that returns a generic list so we have to update the
collection type to generate that generic list code in the proxy class.

Service Reference Settings ﬂﬂ

Clignk

Access level for generated classes; Public J
[Generate asynchronous operations

Data Tvpe
[Always generake message conkracks

Collection bype: System, Colleckions, Generic, Lisk

Dictionary collection byvpe: Syskem, Colleckions . Generic, Dickionary j
¥ Reuse types in referenced assemblies
* Reuse bypes in all referenced assemblies

(" Reuse types in specified referenced assemblies:

] “SmMicrosaft . CSharp i‘
[] “3Microsoft. IdentityModel

[“Omscorlib

[] <25ystem

] -5yskem. Activities

[] -3 5ystem. ComponentiModel. Datasnnotations j

Compatibility

Add a wWeb Reference instead of a Service Reference, This will generate code based on JMET
Framewark 2,0 \Web Services technalagy.

add wWeb Reference. ..

O, | Cancel

5. Leave the namespace name as ServiceReferencel and click OK
6. The service proxy class is generated so that our claims aware ASPX can call the claims aware
WCEF Service

Step 2 - Modify the claims aware ASPX app to save bootstrap tokens and update web.config
file
1. Open the web.config file of the https://localhost/ClaimsAwareASPX project

2. Next confirm that our ClaimsAwareASPX application is using the proper certificate reference for
our decryption certificate. It might be using the localhost or STSTestCert thumbprint value
instead of our encryption cert thumbprint value. Find the
<microsoft.identityModel><serviceCertificate><certificateReference/> element. This certificate
reference is what the relying party application uses to find the private key to decrypt the
incoming token. Change the findValue attribute to the thumbprint value of our CN=Root
Encryption Cert certificate:

<serviceCertificate>
<certificateReference x509FindType="FindByThumbprint"

findValue="7DD17B7807EDA96F1DDD687EB420A097294F0A77" storelLocation="LocalMachine"
storeName="My" />

</serviceCertificate>

Confirm that the issuerNameRegistry, which references the signing certificate, is using the
correct thumbprint value. It might be using the localhost or WIF SDK provided STSTestCert, as
read from the FederationMetadata.xml file. That FederationMetadata.xml file is a static file that
is created as part of the out of the box WIF project template. There are ways to dynamically
create this metadata file so that it has updated details about the endpoints and their properly
required certs but | won’t go into that for this walkthrough. In the same ClaimsAwareASPX
web.config file find the <microsoft.identityModel><issuerNameRegistry><trustedlssuers><add/>
element and make sure the thumbprint attribute value matches the thumbprint value of our
CN=Root Signing Cert certificate:

<issuerNameRegistry

type="Microsoft.IdentityModel.Tokens.ConfigurationBasedIssuerNameRegistry,
Microsoft.IdentityModel, Version=3.5.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35">

<trustedIssuers>
<add thumbprint="70C883F888C017B3FBO2B9887F7835794473CO6F"

name="https://localhost/CustomSTS/" />

4.

</trustedIssuers>
</issuerNameRegistry>

Find the <microsoft.identityModel> element and then add the saveBootstrapTokens attribute to
the <service> element.

<microsoft.identityModel>
<service saveBootstrapTokens="true">

When you set this attribute to true then the security token returned by our CustomSTS passive
endpoint, the token that the client used to access the claims aware ASPX web app, is added as a
bootstrap token to the lldentity so that you can programmatically use that token to request
claims as that user against the CustomSTS Active endpoint. This is a key piece to enable claims
identity delegation

Update the certificate validation mode. By default the certificate validation mode is
PeerOrChainTrust. Peer means that it will check the LocalMachine -> TrustedPeople store for
the certificate. Also the default value for revocationMode is Online, but since we are using self-
signed certificates there is no revocation process available for the certificate. We need to
change the revocationMode so add the following element under the
<microsoft.identityModel><service> section:

http://msdn.microsoft.com/en-us/library/microsoft.identitymodel.configuration.x509certificatevalidationelement.validationmode.aspx

<certificateValidation certificateValidationMode="PeerOrChainTrust"
revocationMode="NoCheck"/>

6. If you modify the WCF relying party application endpoints, and select one of the endpoints that
uses the authentication mode of IssuedTokenForSsINegotiated then you will have the following
behavior element to your <system.serviceModel> section of the ASPX RP app web.config file.
This is because during the SSL negotiation these makecert certificates will fail on certificate
revocation checks:

<behaviors>
<endpointBehaviors>
<behavior>
<clientCredentials>
<serviceCertificate>
<authentication certificateValidationMode="None" revocationMode="NoCheck"/>
</serviceCertificate>
</clientCredentials>
</behavior>
</endpointBehaviors>
</behaviors>

7. If you are using the WCF RP endpoint that uses the IssuedTokenOverTransport authentication
mode, then add a service reference and make the changes to the config file suggested above
then your web.config file of the ClaimsAwareASPX relying party application will look similar to
the following (of course certificate thumbprints values will need to be changed to use your own
certificates):

Front end claims aware ASPX web.config file (IssuedTokenOverTransport)

<?xml version="1.0" encoding="UTF-8"?>

<!--
Note: As an alternative to hand editing this file you can use the
web admin tool to configure settings for your application. Use
the Website->Asp.Net Configuration option in Visual Studio.
A full list of settings and comments can be found in
machine.config.comments usually located in
\Windows\Microsoft.Net\Framework\v2.x\Config

-->

<configuration>

<configSections>

<section name="microsoft.identityModel"

type="Microsoft.IdentityModel.Configuration.MicrosoftIdentityModelSection,
Microsoft.IdentityModel, Version=3.5.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35" />

</configSections>

<appSettings>

<add key="FederationMetadatalLocation"

value="https://localhost/CustomSTS/FederationMetadata/2007-06/FederationMetadata.xml" />

</appSettings>
<connectionStrings />
<location path="FederationMetadata">
<system.web>
<authorization>
<allow users="*" />
</authorization>
</system.web>
</location>
<system.web>
<authentication mode="None" />
<!--
Set compilation debug="true" to insert debugging
symbols into the compiled page. Because this
affects performance, set this value to true only
during development.
-->
<compilation debug="true" targetFramework="4.0">
<assemblies>
<add assembly="Microsoft.IdentityModel, Version=3.5.0.0, Culture=neutral,
PublicKeyToken=31BF3856AD364E35" />
</assemblies>
</compilation>
<!--
The <authentication> section enables configuration
of the security authentication mode used by
ASP.NET to identify an incoming user.
-->
<!--Commented out by FedUtil-->
<!--<authentication mode="Forms"><forms loginUrl="Login.aspx" protection="All"
timeout="30" name=".ASPXAUTH" path="/" requireSSL="false" slidingExpiration="true"
defaultUrl="default.aspx" cookieless="UseDeviceProfile" enableCrossAppRedirects="false'
/></authentication>-->

<!-- Deny Anonymous users. -->
<authorization>

<deny users="?" />
</authorization>
<!--

The <customErrors> section enables configuration

of what to do if/when an unhandled error occurs
during the execution of a request. Specifically,

it enables developers to configure html error pages
to be displayed in place of an error stack trace.

<customErrors mode="RemoteOnly" defaultRedirect="GenericErrorPage.htm">
<error statusCode="403" redirect="NoAccess.htm" />
<error statusCode="404" redirect="FileNotFound.htm" />
</customErrors>
-->
<pages controlRenderingCompatibilityVersion="3.5" />
<httpRuntime requestValidationType="SampleRequestValidator" />
<httpModules>
<add name="ClaimsPrincipalHttpModule"
type="Microsoft.IdentityModel.Web.ClaimsPrincipalHttpModule, Microsoft.IdentityModel,
Version=3.5.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" />
<add name="WSFederationAuthenticationModule"
type="Microsoft.IdentityModel.Web.WSFederationAuthenticationModule,

Microsoft.IdentityModel, Version=3.5.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35" />
<add name="SessionAuthenticationModule"
type="Microsoft.IdentityModel.Web.SessionAuthenticationModule, Microsoft.IdentityModel,
Version=3.5.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" />
</httpModules>
<identity impersonate="false" />
</system.web>
<system.codedom>
</system.codedom>
<l--
The system.webServer section is required for running ASP.NET AJAX under Internet
Information Services 7.0. It is not necessary for previous version of IIS.
-->
<system.webServer>
<validation validateIntegratedModeConfiguration="false" />
<modules>
<add name="ClaimsPrincipalHttpModule™
type="Microsoft.IdentityModel.Web.ClaimsPrincipalHttpModule, Microsoft.IdentityModel,
Version=3.5.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35"
preCondition="managedHandler" />
<add name="WSFederationAuthenticationModule"
type="Microsoft.IdentityModel.Web.WSFederationAuthenticationModule,
Microsoft.IdentityModel, Version=3.5.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35" preCondition="managedHandler" />
<add name="SessionAuthenticationModule"
type="Microsoft.IdentityModel.Web.SessionAuthenticationModule, Microsoft.IdentityModel,
Version=3.5.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35"
preCondition="managedHandler" />
</modules>
</system.webServer>
<microsoft.identityModel>
<service saveBootstrapTokens="true">
<audienceUris>
<add value="https://localhost/ClaimsAwareASPX/" />
</audienceUris>
<federatedAuthentication>
<wsFederation passiveRedirectEnabled="true" issuer="https://localhost/CustomSTS/"
realm="https://localhost/ClaimsAwareASPX/" requireHttps="true" />
<cookieHandler requireSsl="true" />
</federatedAuthentication>
<serviceCertificate>
<certificateReference x509FindType="FindByThumbprint"
findValue="7DD17B7807EDA96F1DDD687EB420A097294F0OA77" storelLocation="LocalMachine"
storeName="My" />
</serviceCertificate>
<certificateValidation certificateValidationMode="PeerOrChainTrust"
revocationMode="NoCheck"/>
<applicationService>
<claimTypeRequired>
<l--Following are the claims offered by STS 'https://localhost/CustomSTS/"'. Add
or uncomment claims that you require by your application and then update the federation
metadata of this application.-->
<claimType type="http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name"
optional="true" />
<claimType type="http://schemas.microsoft.com/ws/2008/06/identity/claims/role"
optional="true" />
</claimTypeRequired>

</applicationService>
<issuerNameRegistry
type="Microsoft.IdentityModel.Tokens.ConfigurationBasedIssuerNameRegistry,
Microsoft.IdentityModel, Version=3.5.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35">
<trustedIssuers>
<add thumbprint="70C883F888C017B3FBO2B9887F7835794473CO6F"
name="https://localhost/CustomSTS/" />
</trustedIssuers>
</issuerNameRegistry>
</service>
</microsoft.identityModel>
<system.serviceModel>
<bindings>
<customBinding>
<binding name="CustomBinding_IService">
<security defaultAlgorithmSuite="Default"
authenticationMode="IssuedTokenOverTransport"
requireDerivedKeys="false" securityHeaderLayout="Strict"
includeTimestamp="true"
keyEntropyMode="CombinedEntropy"
messageSecurityVersion="WSSecurityl1lWSTrustFebruary2005WSSecureConversationFebruary2005ws
SecurityPolicyllBasicSecurityProfilel@">
<issuedTokenParameters keyType="SymmetricKey" tokenType="http://docs.oasis-
open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV1.1">
<issuer address="https://localhost/CustomSTS/ActAsIssuer.svc"
binding="ws2007HttpBinding"
bindingConfiguration="https://localhost/CustomSTS/ActAsIssuer.svc" />
<issuerMetadata address="https://localhost/CustomSTS/ActAsIssuer.svc/mex"
/>
</issuedTokenParameters>
<localClientSettings cacheCookies="true" detectReplays="false"
replayCacheSize="900000" maxClockSkew="00:05:00"
maxCookieCachingTime="Infinite"
replayWindow="00:05:00" sessionKeyRenewalInterval="10:00:00"
sessionKeyRolloverInterval="00:05:00" reconnectTransportOnFailure="true"
timestampValidityDuration="00:05:00" cookieRenewalThresholdPercentage="60"
/>
<localServiceSettings detectReplays="false" issuedCookielLifetime="10:00:00"
maxStatefulNegotiations="128" replayCacheSize="900000"
maxClockSkew="00:05:00"
negotiationTimeout="00:01:00" replayWindow="00:05:00"
inactivityTimeout="00:02:00"
sessionKeyRenewalInterval="15:00:00" sessionKeyRolloverInterval="00:05:00"
reconnectTransportOnFailure="true" maxPendingSessions="128"
maxCachedCookies="1000" timestampValidityDuration="00:05:00" />
<secureConversationBootstrap />
</security>
<textMessageEncoding maxReadPoolSize="64" maxWritePoolSize="16"
messageVersion="Default" writeEncoding="utf-8">
<readerQuotas maxDepth="32" maxStringContentLength="8192"
maxArraylLength="16384"
maxBytesPerRead="4096" maxNameTableCharCount="16384" />
</textMessageEncoding>
<httpsTransport manualAddressing="false" maxBufferPoolSize="524288"
maxReceivedMessageSize="65536" allowCookies="false"
authenticationScheme="Anonymous"

bypassProxyOnLocal="false" decompressionEnabled="true"
hostNameComparisonMode="StrongWildcard"

keepAliveEnabled="true" maxBufferSize="65536"
proxyAuthenticationScheme="Anonymous"

realm="" transferMode="Buffered" unsafeConnectionNtlmAuthentication="false"
useDefaultWebProxy="true" requireClientCertificate="false" />
</binding>
</customBinding>
<Ws2007HttpBinding>

<binding name="https://localhost/CustomSTS/ActAsIssuer.svc"
closeTimeout="00:01:00"
openTimeout="00:01:00" receiveTimeout="00:10:00" sendTimeout="00:01:00"
bypassProxyOnLocal="false" transactionFlow="false"
hostNameComparisonMode="StrongWildcard"
maxBufferPoolSize="524288" maxReceivedMessageSize="65536"
messageEncoding="Text"
textEncoding="utf-8" useDefaultWebProxy="true" allowCookies="false">
<readerQuotas maxDepth="32" maxStringContentLength="8192"
maxArraylLength="16384"
maxBytesPerRead="4096" maxNameTableCharCount="16384" />
<reliableSession ordered="true" inactivityTimeout="00:10:00"
enabled="false" />
<security mode="TransportWithMessageCredential">
<transport clientCredentialType="None" proxyCredentialType="None"
realm="" />
<message clientCredentialType="Windows" negotiateServiceCredential="true"
algorithmSuite="Default" establishSecurityContext="false" />
</security>
</binding>
</ws2007HttpBinding>
</bindings>

<!-- NOTE: If your backend claims aware WCF Service is configured to use
the IssuedTokenForSslNegotiated authentication mode then you'll need
to uncomment the following behavior section so that the SSL negotiation
ignores revocation problem of our makecert certs -->
<!--<behaviors>
<endpointBehaviors>
<behavior>
<clientCredentials>
<serviceCertificate>
<authentication certificateValidationMode="None" revocationMode="NoCheck"/>
</serviceCertificate>
</clientCredentials>
</behavior>
</endpointBehaviors>
</behaviors>-->
<client>
<endpoint address="https://localhost/ClaimsAwareWCF/Service.svc"
binding="customBinding" bindingConfiguration="CustomBinding_IService"
contract="ServiceReferencel.IService" name="CustomBinding_IService" />
</client>
</system.serviceModel>
</configuration>

Step 3 - Add code to call backend WCF service and display claims

1.

Modify the default.aspx.cs code file. Our updated code will display the list of claims that are
available to the ASPX page and are issued by our CustomSTS passive endpoint. This list will
include the LivelD Claims, the Azure ACS claims, and the claims added in our passive custom
security token service.

The code will then get access to the bootstrap token and use that to build a channel to call our
backend claims aware WCF service. The backend WCF service enumerates the claims available
to it and return that claimset. The claims available to the backend should include the claims
from the original bootstrap token (Live ID claims, Azure ACS claims, passive endpoint claims) and
then it will also include the claims added in our CustomSTS active endpoint.

Finally the code displays the two sets of claims to the page for viewing.

Default.aspx.cs code behind file

// THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF
// ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A

// PARTICULAR PURPOSE.

//

// Copyright (c) Microsoft Corporation. All rights reserved.

//
//

using
using
using

using
using
using
using
using
using
using
using
using

System;
System.Web.UI;
System.Web.UI.WebControls;

Microsoft.IdentityModel.Claims;
System.Collections.Generic;
System.IdentityModel.Tokens;

System.Threading;

System.ServiceModel;
System.Security.Cryptography.X509Certificates;
Microsoft.IdentityModel.Protocols.WSTrust;
System.ServiceModel.Security;

System.Text;

public partial class _Default : System.Web.UI.Page

{

Label errorLabel = new Label();

protected void Page Load(object sender, EventArgs e)

errorLabel.Text = ;
errorLabel.ForeColor = System.Drawing.Color.Red;

IClaimsPrincipal claimsPrincipal = Page.User as IClaimsPrincipal;
IClaimsIdentity claimsIdentity = (IClaimsIdentity)claimsPrincipal.Identity;

Table PassiveClaimsTable = GetTable();

Table ActiveClaimsTable = GetTable();

TableRow newRow;

TableCell newClaimTypeCell, newClaimValueCell;

// Populate the list of incoming claims from the CustomSTS
// passive endpoint into the PassiveClaimsTable
foreach (Claim claim in claimsIdentity.Claims)
{
newRow = new TableRow();
newClaimTypeCell = new TableCell();
newClaimTypeCell.Text = claim.ClaimType;

newClaimValueCell = new TableCell();
newClaimValueCell.Text = claim.Value;

newRow.Cells.Add(newClaimTypeCell);
newRow.Cells.Add(newClaimValueCell);

PassiveClaimsTable.Rows.Add(newRow);

// Call the backend claims aware WCF Service
// Which returns a list of ViewClaim objects
List<ServiceReferencel.ViewClaim> vc = CallBackendClaimsAwareWCFService();

// Populate the list of claims from the CustomSTS
// active endpoint and available inside the WCF
// service method into the ActiveClaimsTable
foreach (ServiceReferencel.ViewClaim ¢ in vc)
{
newRow = new TableRow();
newClaimTypeCell = new TableCell();
newClaimTypeCell.Text = c.ClaimType;

newClaimValueCell = new TableCell();
newClaimValueCell.Text = c.Value;

newRow.Cells.Add(newClaimTypeCell);
newRow.Cells.Add(newClaimvValueCell);

ActiveClaimsTable.Rows.Add(newRow);

}

// Create and populate web controls

Label passivelabel = new Label();

passivelLabel.Text = "Claims returned from CustomSTS Passive endpoint and
available inside ASPX code";

passivelLabel.Font.Size = 12;

passivelLabel.Font.Bold = true;

Label activelLabel = new Label();

activelabel.Text = "

Claims returned from CustomSTS Active endpoint and
available inside WCF relying party app";

activelabel.Font.Size = 12;

activelabel.Font.Bold = true;

// Build page output to display claim sets:
this.Controls.Add(passivelabel);
this.Controls.Add(PassiveClaimsTable);
this.Controls.Add(activelabel);
this.Controls.Add(ActiveClaimsTable);
this.Controls.Add(errorLabel);

protected Table GetTable()
{

Table claimsTable = new Table();
TableRow headerRow = new TableRow();

TableCell claimTypeCell = new TableCell();
claimTypeCell.Text = "Claim Type";
claimTypeCell.BorderStyle = BorderStyle.Solid;

TableCell claimValueCell = new TableCell();
claimValueCell.Text = "Claim Value";
claimValueCell.BorderStyle = BorderStyle.Solid;

headerRow.Cells.Add(claimTypeCell);
headerRow.Cells.Add(claimValueCell);
claimsTable.Rows.Add(headerRow);
return claimsTable;

protected List<ServiceReferencel.ViewClaim> CallBackendClaimsAwareWCFService()
{

List<ServiceReferencel.ViewClaim> vc = new List<ServiceReferencel.ViewClaim>();

SecurityToken bootstrapToken =
((IClaimsPrincipal)Thread.CurrentPrincipal).Identities[@].BootstrapToken;

string tmpResult = "Call failed";

if (bootstrapToken == null)
{

}

errorLabel.Text = tmpResult;

// Get the channel factory to the backend service from the application state

ChannelFactory<ServiceReferencel.IServiceChannel> factory = new
ChannelFactory<ServiceReferencel.IServiceChannel>("CustomBinding IService");

//factory.Credentials.ServiceCertificate.SetDefaultCertificate("CN=1localhost",
StoreLocation.LocalMachine, StoreName.My);

factory.Credentials.ServiceCertificate.SetDefaultCertificate("CN=Repro Signing
Cert", StorelLocation.LocalMachine, StoreName.My);

factory.ConfigureChannelFactory();
factory.Credentials.SupportInteractive = false;

// Create and setup channel to talk to the backend service
ServiceReferencel.IServiceChannel channel;

// Setup the ActAs to point to the caller's token so that we perform a delegated
call to the backend service

// on behalf of the original caller.

channel =
factory.CreateChannelActingAs<ServiceReferencel.IServiceChannel>(bootstrapToken);

// Call the backend service and handle the possible exceptions

try
{
vc = channel.GetClaims();
channel.Close();
}
catch (SecurityAccessDeniedException)
{
channel.Abort();
tmpResult = "Access is denied";
}
catch (CommunicationException exception)
{

StringBuilder sb = new StringBuilder();

sb.AppendLine(exception.Message);

sb.AppendLine(exception.StackTrace);

Exception ex = exception.InnerException;

while (ex != null)

{
sb.AppendLine("===========================");
sb.AppendLine(ex.Message);
sb.AppendLine(ex.StackTrace);
ex = ex.InnerException;

channel.Abort();

errorLabel.Text = sb.ToString();

}
catch (TimeoutException)
{
channel.Abort();
errorLabel.Text = "Timed out...";
}
catch (Exception exception)
{

StringBuilder sb = new StringBuilder();

sb.AppendLine("An unexpected exception occured.");

sb.AppendLine(exception.StackTrace);
channel.Abort();

errorLabel.Text = sb.ToString();

}

return vc;

Step 4 - Final output

If the application is configured correctly then when you browse to the default.aspx web page of the
front end ASPX relying party then you should see two tables of claims. The top table are the list of claims
available in the ASPX page, the claims returned from the CustomSTS passive endpoint which include
claims from LivelD, any claims added by Azure ACS, and any claims added by the passive endpoint of our
STS.

The second table dumps the list of claims that were available inside the execution of the claims aware
WCF service method. Because we configured identity delegation using bootstrap tokens and
CreateChannelActingAs<> calls the same set of claims are available however this time the token also
includes any claims added by the CustomSTS Active endpoint.

= Claims-aware ASP.NET Web Site - Windows Internet Explorer i =] [E |

@ | |5 hitps: [localhost Claims A aren 5P Default, aspe: Dj = MR ANR:S 2 Claims-aware ASP.NET Web ... X

Windows Identity Foundation - Claims-aware ASP.NET Web Site

Claims returned from CustomSTS Passive endpoint and available inside ASPX code

|claim Type "Claim Value |
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/nameidentifier &«
http://schemas.microsoft.com/accesscontrolservice/2010/07/claims/identityprovider uri: WindowsLivelD
http://schemas.xmlsoap.org/ws/2005/05/dentity/claims/name Todd Foust
http://schemas.microsoft.com/ws/2008/06/identity/claims/role Administrator
http://localhost/CustomSts/PassiveEndpoint/ ROTYClaim Cam Newton
http://localhost/CustomSts/PassiveEndpoint/ Superbowl WinnerClaim Giants

Claims returned from CustomSTS Active endpoint and available inside WCTF relying party app

IClaim Type "Claim Value I
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/nameidentifier e-___J
http://schemas.microsoft.com/accesscontrolservice/2010/07/claims/identityprovider uri: WindowsLivelD
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name Todd Foust
http://schemas.microsoft.com/ws/2008/06/identity/claims/role Administrator
http://localhost/CustomSts/PassiveEndpoint/ ROTYClaim Cam Newton
http://localhost/CustomSts/PassiveEndpoint/ Superbowl WinnerClaim Giants
http://localhost/CustomSts/ActiveEndpoint/EmailClaim mybogusemail@hotmail.com
http://localhost/CustomSts/ActiveEndpoint/CustomClaim any value

