Azure AI Search
An Azure search service with built-in artificial intelligence capabilities that enrich information to help identify and explore relevant content at scale.
1,083 questions
This browser is no longer supported.
Upgrade to Microsoft Edge to take advantage of the latest features, security updates, and technical support.
When I am trying to create a chat playground I can't enable vector search for my "Azure AI Search" data source. The index has embedding included and I have embedding in my deployment.
The steps I have taken to get here.
The checkbox "Add vector search..." is disabled.
Here is the index's json if that helps:
{
"name": "knowledge-index",
"fields": [
{
"name": "knowledge_id",
"type": "Edm.String",
"key": true,
"retrievable": true,
"stored": true,
"searchable": false,
"filterable": true,
"sortable": false,
"facetable": false,
"synonymMaps": []
},
{
"name": "contact_dt",
"type": "Edm.String",
"key": false,
"retrievable": true,
"stored": true,
"searchable": false,
"filterable": true,
"sortable": false,
"facetable": false,
"synonymMaps": []
},
{
"name": "reference_num",
"type": "Edm.String",
"key": false,
"retrievable": true,
"stored": true,
"searchable": true,
"filterable": true,
"sortable": true,
"facetable": true,
"synonymMaps": []
},
{
"name": "vector",
"type": "Collection(Edm.Single)",
"key": false,
"retrievable": true,
"stored": true,
"searchable": true,
"filterable": false,
"sortable": false,
"facetable": false,
"synonymMaps": [],
"dimensions": 3072,
"vectorSearchProfile": "myHnswProfile"
}
],
"scoringProfiles": [],
"corsOptions": {
"allowedOrigins": [
"*"
],
"maxAgeInSeconds": 300
},
"suggesters": [],
"analyzers": [],
"tokenizers": [],
"tokenFilters": [],
"charFilters": [],
"normalizers": [],
"similarity": {
"@odata.type": "#Microsoft.Azure.Search.BM25Similarity"
},
"semantic": {
"configurations": [
{
"name": "mySemanticConfig",
"prioritizedFields": {
"titleField": {
"fieldName": "serial_num"
},
"prioritizedContentFields": [
{
"fieldName": "text_serial_model"
}
],
"prioritizedKeywordsFields": []
}
}
]
},
"vectorSearch": {
"algorithms": [
{
"name": "myHnsw",
"kind": "hnsw",
"hnswParameters": {
"m": 4,
"efConstruction": 400,
"efSearch": 500,
"metric": "cosine"
}
},
{
"name": "myExhaustiveKnn",
"kind": "exhaustiveKnn",
"exhaustiveKnnParameters": {
"metric": "cosine"
}
}
],
"profiles": [
{
"name": "myHnswProfile",
"algorithm": "myHnsw",
"vectorizer": "vectorizer-1732168287035"
},
{
"name": "myExhaustiveKnnProfile",
"algorithm": "myExhaustiveKnn",
"vectorizer": "vectorizer-1732168287035"
},
{
"name": "vector-profile-1732168273201",
"algorithm": "myHnsw",
"vectorizer": "vectorizer-1732168287035"
}
],
"vectorizers": [
{
"name": "vectorizer-1732168287035",
"kind": "azureOpenAI",
"azureOpenAIParameters": {
"resourceUri": "https://oai-east.openai.azure.com",
"deploymentId": "text-embedding-3-large",
"apiKey": "<redacted>",
"modelName": "text-embedding-3-large"
}
}
],
"compressions": []
},
"@odata.etag": "\"0x8DD09F1043B4F27\""
}
I would like to use both vector and semantic. If I figure out how to enable vector search will the request converted to vectors and then sent to the model?
My desired result is that I will be able to enable vector search against my index in the chat playground.