Hi @Liron Hagbi
Welcome to the Microsoft Q&A and thank you for posting your questions here.
I understand that you're having trouble exporting your Random Forest model to the ONNX format in Azure Machine Learning Studio. While Azure ML Studio doesn't provide a direct option to export Random Forest models to ONNX, you can achieve this using the sklearn-onnx
package in Python. Here’s a step-by-step guide to help you:
Step 1: Install Required Packages: First, you need to install the sklearn-onnx
package. You can do this using pip:
pip install skl2onnx onnxruntime
Step 2: Convert the Model to ONNX: Next, you can convert your trained Random Forest model to the ONNX format using the sklearn-onnx
package. Here’s an example:
import skl2onnx
from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType
import joblib
# Load your trained Random Forest model
model = joblib.load('path_to_your_model.pkl')
# Define the initial type
initial_type = [('float_input', FloatTensorType([None, model.n_features_in_]))]
# Convert the model
onnx_model = convert_sklearn(model, initial_types=initial_type)
# Save the ONNX model
with open("random_forest_model.onnx", "wb") as f:
f.write(onnx_model.SerializeToString())
Step 3: Verify the ONNX Model: You can verify the ONNX model using the onnxruntime
package to ensure it works correctly:
import onnxruntime as rt
import numpy as np
# Load the ONNX model
sess = rt.InferenceSession("random_forest_model.onnx")
# Prepare input data
input_name = sess.get_inputs().name
label_name = sess.get_outputs().name
data = np.array([[...]], dtype=np.float32) # Replace with your input data
# Run the model
pred = sess.run([label_name], {input_name: data})
print(pred)
For more detailed guidance, you can refer to the official Microsoft documentation:
I hope this is helpful! Do not hesitate to let me know if you have any other questions.
If the reply was helpful, please don't forget to upvote and/or Accept the answer, this can be beneficial to other community members.
Thanks