CLI (v2) command job YAML schema
APPLIES TO: Azure CLI ml extension v2 (current)
The source JSON schema can be found at https://azuremlschemas.azureedge.net/latest/commandJob.schema.json.
Note
The YAML syntax detailed in this document is based on the JSON schema for the latest version of the ML CLI v2 extension. This syntax is guaranteed only to work with the latest version of the ML CLI v2 extension. You can find the schemas for older extension versions at https://azuremlschemasprod.azureedge.net/.
YAML syntax
Key | Type | Description | Allowed values | Default value |
---|---|---|---|---|
$schema |
string | The YAML schema. If you use the Azure Machine Learning VS Code extension to author the YAML file, including $schema at the top of your file enables you to invoke schema and resource completions. |
||
type |
const | The type of job. | command |
command |
name |
string | Name of the job. Must be unique across all jobs in the workspace. If omitted, Azure Machine Learning autogenerates a GUID for the name. | ||
display_name |
string | Display name of the job in the studio UI. Can be nonunique within the workspace. If omitted, Azure Machine Learning autogenerates a human-readable adjective-noun identifier for the display name. | ||
experiment_name |
string | Experiment name to organize the job under. Each job's run record is organized under the corresponding experiment in the studio's "Experiments" tab. If omitted, Azure Machine Learning defaults it to the name of the working directory where the job was created. | ||
description |
string | Description of the job. | ||
tags |
object | Dictionary of tags for the job. | ||
command |
string | The command to execute. | ||
code |
string | Local path to the source code directory to be uploaded and used for the job. | ||
environment |
string or object | The environment to use for the job. Can be either a reference to an existing versioned environment in the workspace or an inline environment specification. To reference an existing environment, use the azureml:<environment_name>:<environment_version> syntax or azureml:<environment_name>@latest (to reference the latest version of an environment). To define an environment inline, follow the Environment schema. Exclude the name and version properties as they aren't supported for inline environments. |
||
environment_variables |
object | Dictionary of environment variable key-value pairs to set on the process where the command is executed. | ||
distribution |
object | The distribution configuration for distributed training scenarios. One of MpiConfiguration, PyTorchConfiguration, or TensorFlowConfiguration. | ||
compute |
string | Name of the compute target to execute the job on. Can be either a reference to an existing compute in the workspace (using the azureml:<compute_name> syntax) or local to designate local execution. Note: jobs in pipeline didn't support local as compute |
local |
|
resources.instance_count |
integer | The number of nodes to use for the job. | 1 |
|
resources.instance_type |
string | The instance type to use for the job. Applicable for jobs running on Azure Arc-enabled Kubernetes compute (where the compute target specified in the compute field is of type: kubernentes ). If omitted, defaults to the default instance type for the Kubernetes cluster. For more information, see Create and select Kubernetes instance types. |
||
resources.shm_size |
string | The size of the docker container's shared memory block. Should be in the format of <number><unit> where number has to be greater than 0 and the unit can be one of b (bytes), k (kilobytes), m (megabytes), or g (gigabytes). |
2g |
|
limits.timeout |
integer | The maximum time in seconds the job is allowed to run. When this limit is reached, the system cancels the job. | ||
inputs |
object | Dictionary of inputs to the job. The key is a name for the input within the context of the job and the value is the input value. Inputs can be referenced in the command using the ${{ inputs.<input_name> }} expression. |
||
inputs.<input_name> |
number, integer, boolean, string, or object | One of a literal value (of type number, integer, boolean, or string) or an object containing a job input data specification. | ||
outputs |
object | Dictionary of output configurations of the job. The key is a name for the output within the context of the job and the value is the output configuration. Outputs can be referenced in the command using the ${{ outputs.<output_name> }} expression. |
||
outputs.<output_name> |
object | You can leave the object empty, in which case by default the output is of type uri_folder and Azure Machine Learning generates an output location for the output. Files to the output directory are written via read-write mount. If you want to specify a different mode for the output, provide an object containing the job output specification. |
||
identity |
object | The identity is used for data accessing. It can be UserIdentityConfiguration, ManagedIdentityConfiguration, or None. If UserIdentityConfiguration, the identity of job submitter is used to access, input data and write result to output folder, otherwise, the managed identity of the compute target is used. |
Distribution configurations
MpiConfiguration
Key | Type | Description | Allowed values |
---|---|---|---|
type |
const | Required. Distribution type. | mpi |
process_count_per_instance |
integer | Required. The number of processes per node to launch for the job. |
PyTorchConfiguration
Key | Type | Description | Allowed values | Default value |
---|---|---|---|---|
type |
const | Required. Distribution type. | pytorch |
|
process_count_per_instance |
integer | The number of processes per node to launch for the job. | 1 |
TensorFlowConfiguration
Key | Type | Description | Allowed values | Default value |
---|---|---|---|---|
type |
const | Required. Distribution type. | tensorflow |
|
worker_count |
integer | The number of workers to launch for the job. | Defaults to resources.instance_count . |
|
parameter_server_count |
integer | The number of parameter servers to launch for the job. | 0 |
Job inputs
Key | Type | Description | Allowed values | Default value |
---|---|---|---|---|
type |
string | The type of job input. Specify uri_file for input data that points to a single file source, or uri_folder for input data that points to a folder source. |
uri_file , uri_folder , mlflow_model , custom_model |
uri_folder |
path |
string | The path to the data to use as input. Can be specified in a few ways: - A local path to the data source file or folder, for example, path: ./iris.csv . The data gets uploaded during job submission. - A URI of a cloud path to the file or folder to use as the input. Supported URI types are azureml , https , wasbs , abfss , adl . See Core yaml syntax for more information on how to use the azureml:// URI format. - An existing registered Azure Machine Learning data asset to use as the input. To reference a registered data asset, use the azureml:<data_name>:<data_version> syntax or azureml:<data_name>@latest (to reference the latest version of that data asset), for example, path: azureml:cifar10-data:1 or path: azureml:cifar10-data@latest . |
||
mode |
string | Mode of how the data should be delivered to the compute target. For read-only mount ( ro_mount ), the data is consumed as a mount path. A folder is mounted as a folder and a file is mounted as a file. Azure Machine Learning resolves the input to the mount path. For download mode, the data is downloaded to the compute target. Azure Machine Learning resolves the input to the downloaded path. If you only want the URL of the storage location of the data artifacts rather than mounting or downloading the data itself, you can use the direct mode. This mode passes in the URL of the storage location as the job input. In this case, you're fully responsible for handling credentials to access the storage. The eval_mount and eval_download modes are unique to MLTable, and either mounts the data as a path or downloads the data to the compute target. For more information on modes, see Access data in a job |
ro_mount , download , direct , eval_download , eval_mount |
ro_mount |
Job outputs
Key | Type | Description | Allowed values | Default value |
---|---|---|---|---|
type |
string | The type of job output. For the default uri_folder type, the output corresponds to a folder. |
uri_folder , mlflow_model , custom_model |
uri_folder |
mode |
string | Mode of how output files get delivered to the destination storage. For read-write mount mode (rw_mount ), the output directory is a mounted directory. For upload mode, the files written get uploaded at the end of the job. |
rw_mount , upload |
rw_mount |
Identity configurations
UserIdentityConfiguration
Key | Type | Description | Allowed values |
---|---|---|---|
type |
const | Required. Identity type. | user_identity |
ManagedIdentityConfiguration
Key | Type | Description | Allowed values |
---|---|---|---|
type |
const | Required. Identity type. | managed or managed_identity |
Remarks
The az ml job
command can be used for managing Azure Machine Learning jobs.
Examples
Examples are available in the examples GitHub repository. The following sections show some of the examples.
YAML: hello world
$schema: https://azuremlschemas.azureedge.net/latest/commandJob.schema.json
command: echo "hello world"
environment:
image: library/python:latest
YAML: display name, experiment name, description, and tags
$schema: https://azuremlschemas.azureedge.net/latest/commandJob.schema.json
command: echo "hello world"
environment:
image: library/python:latest
tags:
hello: world
display_name: hello-world-example
experiment_name: hello-world-example
description: |
# Azure Machine Learning "hello world" job
This is a "hello world" job running in the cloud via Azure Machine Learning!
## Description
Markdown is supported in the studio for job descriptions! You can edit the description there or via CLI.
YAML: environment variables
$schema: https://azuremlschemas.azureedge.net/latest/commandJob.schema.json
command: echo $hello_env_var
environment:
image: library/python:latest
environment_variables:
hello_env_var: "hello world"
YAML: source code
$schema: https://azuremlschemas.azureedge.net/latest/commandJob.schema.json
command: ls
code: src
environment:
image: library/python:latest
YAML: literal inputs
$schema: https://azuremlschemas.azureedge.net/latest/commandJob.schema.json
command: |
echo ${{inputs.hello_string}}
echo ${{inputs.hello_number}}
environment:
image: library/python:latest
inputs:
hello_string: "hello world"
hello_number: 42
YAML: write to default outputs
$schema: https://azuremlschemas.azureedge.net/latest/commandJob.schema.json
command: echo "hello world" > ./outputs/helloworld.txt
environment:
image: library/python:latest
YAML: write to named data output
$schema: https://azuremlschemas.azureedge.net/latest/commandJob.schema.json
command: echo "hello world" > ${{outputs.hello_output}}/helloworld.txt
outputs:
hello_output:
environment:
image: python
YAML: datastore URI file input
$schema: https://azuremlschemas.azureedge.net/latest/commandJob.schema.json
command: |
echo "--iris-csv: ${{inputs.iris_csv}}"
python hello-iris.py --iris-csv ${{inputs.iris_csv}}
code: src
inputs:
iris_csv:
type: uri_file
path: azureml://datastores/workspaceblobstore/paths/example-data/iris.csv
environment: azureml://registries/azureml/environments/sklearn-1.5/labels/latest
YAML: datastore URI folder input
$schema: https://azuremlschemas.azureedge.net/latest/commandJob.schema.json
command: |
ls ${{inputs.data_dir}}
echo "--iris-csv: ${{inputs.data_dir}}/iris.csv"
python hello-iris.py --iris-csv ${{inputs.data_dir}}/iris.csv
code: src
inputs:
data_dir:
type: uri_folder
path: azureml://datastores/workspaceblobstore/paths/example-data/
environment: azureml://registries/azureml/environments/sklearn-1.5/labels/latest
YAML: URI file input
$schema: https://azuremlschemas.azureedge.net/latest/commandJob.schema.json
command: |
echo "--iris-csv: ${{inputs.iris_csv}}"
python hello-iris.py --iris-csv ${{inputs.iris_csv}}
code: src
inputs:
iris_csv:
type: uri_file
path: https://azuremlexamples.blob.core.windows.net/datasets/iris.csv
environment: azureml://registries/azureml/environments/sklearn-1.5/labels/latest
YAML: URI folder input
$schema: https://azuremlschemas.azureedge.net/latest/commandJob.schema.json
command: |
ls ${{inputs.data_dir}}
echo "--iris-csv: ${{inputs.data_dir}}/iris.csv"
python hello-iris.py --iris-csv ${{inputs.data_dir}}/iris.csv
code: src
inputs:
data_dir:
type: uri_folder
path: wasbs://datasets@azuremlexamples.blob.core.windows.net/
environment: azureml://registries/azureml/environments/sklearn-1.5/labels/latest
YAML: Notebook via papermill
$schema: https://azuremlschemas.azureedge.net/latest/commandJob.schema.json
command: |
pip install ipykernel papermill
papermill hello-notebook.ipynb outputs/out.ipynb -k python
code: src
environment:
image: library/python:3.11.6
YAML: basic Python model training
$schema: https://azuremlschemas.azureedge.net/latest/commandJob.schema.json
code: src
command: >-
python main.py
--iris-csv ${{inputs.iris_csv}}
--C ${{inputs.C}}
--kernel ${{inputs.kernel}}
--coef0 ${{inputs.coef0}}
inputs:
iris_csv:
type: uri_file
path: wasbs://datasets@azuremlexamples.blob.core.windows.net/iris.csv
C: 0.8
kernel: "rbf"
coef0: 0.1
environment: azureml://registries/azureml/environments/sklearn-1.5/labels/latest
compute: azureml:cpu-cluster
display_name: sklearn-iris-example
experiment_name: sklearn-iris-example
description: Train a scikit-learn SVM on the Iris dataset.
YAML: basic R model training with local Docker build context
$schema: https://azuremlschemas.azureedge.net/latest/commandJob.schema.json
command: >
source /usr/venv/bin/activate
Rscript train.R
--data_folder ${{inputs.iris}}
code: src
inputs:
iris:
type: uri_file
path: https://azuremlexamples.blob.core.windows.net/datasets/iris.csv
environment:
build:
path: docker-context
compute: azureml:cpu-cluster
display_name: r-iris-example
experiment_name: r-iris-example
description: Train an R model on the Iris dataset.
YAML: distributed PyTorch
$schema: https://azuremlschemas.azureedge.net/latest/commandJob.schema.json
code: src
command: >-
python train.py
--epochs ${{inputs.epochs}}
--learning-rate ${{inputs.learning_rate}}
--data-dir ${{inputs.cifar}}
inputs:
epochs: 1
learning_rate: 0.2
cifar:
type: uri_folder
path: azureml:cifar-10-example@latest
environment: azureml:AzureML-acpt-pytorch-2.2-cuda12.1@latest
compute: azureml:gpu-cluster
distribution:
type: pytorch
process_count_per_instance: 1
resources:
instance_count: 2
display_name: pytorch-cifar-distributed-example
experiment_name: pytorch-cifar-distributed-example
description: Train a basic convolutional neural network (CNN) with PyTorch on the CIFAR-10 dataset, distributed via PyTorch.
YAML: distributed TensorFlow
$schema: https://azuremlschemas.azureedge.net/latest/commandJob.schema.json
code: src
command: >-
python train.py
--epochs ${{inputs.epochs}}
--model-dir ${{inputs.model_dir}}
inputs:
epochs: 1
model_dir: outputs/keras-model
environment: azureml:AzureML-tensorflow-2.16-cuda12@latest
compute: azureml:gpu-cluster
resources:
instance_count: 2
distribution:
type: tensorflow
worker_count: 2
display_name: tensorflow-mnist-distributed-example
experiment_name: tensorflow-mnist-distributed-example
description: Train a basic neural network with TensorFlow on the MNIST dataset, distributed via TensorFlow.