Κοινή χρήση μέσω


LearningModelEvaluationResult Class

Definition

Get the results of the evaluation.

public ref class LearningModelEvaluationResult sealed
/// [Windows.Foundation.Metadata.ContractVersion(Windows.AI.MachineLearning.MachineLearningContract, 65536)]
/// [Windows.Foundation.Metadata.MarshalingBehavior(Windows.Foundation.Metadata.MarshalingType.Agile)]
class LearningModelEvaluationResult final
[Windows.Foundation.Metadata.ContractVersion(typeof(Windows.AI.MachineLearning.MachineLearningContract), 65536)]
[Windows.Foundation.Metadata.MarshalingBehavior(Windows.Foundation.Metadata.MarshalingType.Agile)]
public sealed class LearningModelEvaluationResult
Public NotInheritable Class LearningModelEvaluationResult
Inheritance
Object Platform::Object IInspectable LearningModelEvaluationResult
Attributes

Windows requirements

Device family
Windows 10, version 1809 (introduced in 10.0.17763.0)
API contract
Windows.AI.MachineLearning.MachineLearningContract (introduced in v1.0)

Examples

The following example retrieves the first input and output features of the model, creates an output frame, binds the input and output features, and evaluates the model.

private async Task EvaluateModelAsync(
    VideoFrame _inputFrame, 
    LearningModelSession _session, 
    IReadOnlyList<ILearningModelFeatureDescriptor> _inputFeatures, 
    IReadOnlyList<ILearningModelFeatureDescriptor> _outputFeatures,
    LearningModel _model)
{
    ImageFeatureDescriptor _inputImageDescription;
    TensorFeatureDescriptor _outputImageDescription;
    LearningModelBinding _binding = null;
    VideoFrame _outputFrame = null;
    LearningModelEvaluationResult _results;

    try
    {
        // Retrieve the first input feature which is an image
        _inputImageDescription =
            _inputFeatures.FirstOrDefault(feature => feature.Kind == LearningModelFeatureKind.Image)
            as ImageFeatureDescriptor;

        // Retrieve the first output feature which is a tensor
        _outputImageDescription =
            _outputFeatures.FirstOrDefault(feature => feature.Kind == LearningModelFeatureKind.Tensor)
            as TensorFeatureDescriptor;

        // Create output frame based on expected image width and height
        _outputFrame = new VideoFrame(
            BitmapPixelFormat.Bgra8, 
            (int)_inputImageDescription.Width, 
            (int)_inputImageDescription.Height);

        // Create binding and then bind input/output features
        _binding = new LearningModelBinding(_session);

        _binding.Bind(_inputImageDescription.Name, _inputFrame);
        _binding.Bind(_outputImageDescription.Name, _outputFrame);

        // Evaluate and get the results
        _results = await _session.EvaluateAsync(_binding, "test");
    }
    catch (Exception ex)
    {
        StatusBlock.Text = $"error: {ex.Message}";
        _model = null;
    }
}

Remarks

Windows Server

To use this API on Windows Server, you must use Windows Server 2019 with Desktop Experience.

Thread safety

This API is thread-safe.

Properties

CorrelationId

The optional string that was passed to LearningModelSession.Evaluate.

ErrorStatus

If the evaluation failed, returns an error code for what caused the failure.

Outputs

Gets the output features of the model.

Succeeded

True if the evaluation completed successfully; otherwise, false.

Applies to

See also