Επεξεργασία

Κοινή χρήση μέσω


microsoftml.featurize_image: Converts an image into features

Usage

microsoftml.featurize_image(cols: [dict, str], dnn_model: ['Resnet18',
    'Resnet50', 'Resnet101', 'Alexnet'] = 'Resnet18', **kargs)

Description

Featurizes an image using a pre-trained deep neural network model.

Details

featurize_image featurizes an image using the specified pre-trained deep neural network model. The input variables to this transform must be extracted pixel values.

Arguments

cols

Input variable containing extracted pixel values. If dict, the keys represent the names of new variables to be created.

dnn_model

The pre-trained deep neural network. The possible options are:

  • "Resnet18"

  • "Resnet50"

  • "Resnet101"

  • "Alexnet"

The default value is "Resnet18". See Deep Residual Learning for Image Recognition for details about ResNet.

kargs

Additional arguments sent to compute engine.

Returns

An object defining the transform.

See also

load_image, resize_image, extract_pixels.

Example

'''
Example with images.
'''
import numpy
import pandas
from microsoftml import rx_neural_network, rx_predict, rx_fast_linear
from microsoftml import load_image, resize_image, extract_pixels
from microsoftml.datasets.image import get_RevolutionAnalyticslogo

train = pandas.DataFrame(data=dict(Path=[get_RevolutionAnalyticslogo()], Label=[True]))

# Loads the images from variable Path, resizes the images to 1x1 pixels
# and trains a neural net.
model1 = rx_neural_network("Label ~ Features", data=train, 
            ml_transforms=[            
                    load_image(cols=dict(Features="Path")), 
                    resize_image(cols="Features", width=1, height=1, resizing="Aniso"), 
                    extract_pixels(cols="Features")], 
            ml_transform_vars=["Path"], 
            num_hidden_nodes=1, num_iterations=1)

# Featurizes the images from variable Path using the default model, and trains a linear model on the result.
# If dnnModel == "AlexNet", the image has to be resized to 227x227.
model2 = rx_fast_linear("Label ~ Features ", data=train, 
            ml_transforms=[            
                    load_image(cols=dict(Features="Path")), 
                    resize_image(cols="Features", width=224, height=224), 
                    extract_pixels(cols="Features")], 
            ml_transform_vars=["Path"], max_iterations=1)

# We predict even if it does not make too much sense on this single image.
print("\nrx_neural_network")
prediction1 = rx_predict(model1, data=train)
print(prediction1)

print("\nrx_fast_linear")
prediction2 = rx_predict(model2, data=train)
print(prediction2)

Output:

Automatically adding a MinMax normalization transform, use 'norm=Warn' or 'norm=No' to turn this behavior off.
Beginning processing data.
Rows Read: 1, Read Time: 0, Transform Time: 0
Beginning processing data.
Beginning processing data.
Rows Read: 1, Read Time: 0, Transform Time: 0
Beginning processing data.
Beginning processing data.
Rows Read: 1, Read Time: 0, Transform Time: 0
Beginning processing data.
Using: AVX Math

***** Net definition *****
  input Data [3];
  hidden H [1] sigmoid { // Depth 1
    from Data all;
  }
  output Result [1] sigmoid { // Depth 0
    from H all;
  }
***** End net definition *****
Input count: 3
Output count: 1
Output Function: Sigmoid
Loss Function: LogLoss
PreTrainer: NoPreTrainer
___________________________________________________________________
Starting training...
Learning rate: 0.001000
Momentum: 0.000000
InitWtsDiameter: 0.100000
___________________________________________________________________
Initializing 1 Hidden Layers, 6 Weights...
Estimated Pre-training MeanError = 0.707823
Iter:1/1, MeanErr=0.707823(0.00%), 0.01M WeightUpdates/sec
Done!
Estimated Post-training MeanError = 0.707499
___________________________________________________________________
Not training a calibrator because it is not needed.
Elapsed time: 00:00:00.0751759
Elapsed time: 00:00:00.0080433
Automatically adding a MinMax normalization transform, use 'norm=Warn' or 'norm=No' to turn this behavior off.
Beginning processing data.
Rows Read: 1, Read Time: 0, Transform Time: 0
Beginning processing data.
Beginning processing data.
Rows Read: 1, Read Time: 0.001, Transform Time: 0
Beginning processing data.
Beginning processing data.
Rows Read: 1, Read Time: 0, Transform Time: 0
Beginning processing data.
Using 2 threads to train.
Automatically choosing a check frequency of 2.
Auto-tuning parameters: L2 = 5.
Auto-tuning parameters: L1Threshold (L1/L2) = 1.
Using model from last iteration.
Not training a calibrator because it is not needed.
Elapsed time: 00:00:01.0104773
Elapsed time: 00:00:00.0106935

rx_neural_network
Beginning processing data.
Rows Read: 1, Read Time: 0, Transform Time: 0
Beginning processing data.
Elapsed time: 00:00:00.0420328
Finished writing 1 rows.
Writing completed.
  PredictedLabel     Score  Probability
0          False -0.028504     0.492875

rx_fast_linear
Beginning processing data.
Rows Read: 1, Read Time: 0, Transform Time: 0
Beginning processing data.
Elapsed time: 00:00:00.4449623
Finished writing 1 rows.
Writing completed.
  PredictedLabel  Score  Probability
0          False    0.0          0.5