Επεξεργασία

Κοινή χρήση μέσω


series_outliers()

Applies to: ✅ Microsoft FabricAzure Data ExplorerAzure MonitorMicrosoft Sentinel

Scores anomaly points in a series.

The function takes an expression with a dynamic numerical array as input, and generates a dynamic numeric array of the same length. Each value of the array indicates a score of a possible anomaly, using "Tukey's test". A value greater than 1.5 in the same element of the input indicates a rise anomaly. A value less than -1.5 indicates a decline anomaly.

Syntax

series_outliers(series [, kind ] [, ignore_val ] [, min_percentile ] [, max_percentile ])

Learn more about syntax conventions.

Parameters

Name Type Required Description
series dynamic ✔️ An array of numeric values.
kind string The algorithm to use for outlier detection. The supported options are "tukey", which is traditional "Tukey", and "ctukey", which is custom "Tukey". The default is "ctukey".
ignore_val int, long, or real A numeric value indicating the missing values in the series. The default is double(null). The score of nulls and ignore values is set to 0.
min_percentile int, long, or real The minimum percentile to use to calculate the normal inter-quantile range. The default is 10. The value must be in the range [2.0, 98.0]. This parameter is only relevant for the "ctukey" kind.
max_percentile int, long, or real The maximum percentile to use to calculate the normal inter-quantile range. The default is 90. The value must be in the range [2.0, 98.0]. This parameter is only relevant for the "ctukey" kind.

The following table describes differences between "tukey" and "ctukey":

Algorithm Default quantile range Supports custom quantile range
"tukey" 25% / 75% No
"ctukey" 10% / 90% Yes

Tip

The best way to use this function is to apply it to the results of the make-series operator.

Example

range x from 0 to 364 step 1 
| extend t = datetime(2023-01-01) + 1d*x
| extend y = rand() * 10
| extend y = iff(monthofyear(t) != monthofyear(prev(t)), y+20, y) // generate a sample series with outliers at first day of each month
| summarize t = make_list(t), series = make_list(y)
| extend outliers=series_outliers(series)
| extend pos_anomalies = array_iff(series_greater_equals(outliers, 1.5), 1, 0)
| render anomalychart with(xcolumn=t, ycolumns=series, anomalycolumns=pos_anomalies)

Chart of a time series with outliers.