Επεξεργασία

Κοινή χρήση μέσω


series_mv_if_anomalies_fl()

Applies to: ✅ Microsoft FabricAzure Data Explorer

The function series_mv_if_anomalies_fl() is a user-defined function (UDF) that detects multivariate anomalies in series by applying isolation forest model from scikit-learn. The function accepts a set of series as numerical dynamic arrays, the names of the features columns and the expected percentage of anomalies out of the whole series. The function builds an ensemble of isolation trees for each series and marks the points that are quickly isolated as anomalies.

Prerequisites

  • The Python plugin must be enabled on the cluster. This is required for the inline Python used in the function.

Syntax

T | invoke series_mv_if_anomalies_fl(features_cols, anomaly_col [, score_col [, anomalies_pct [, num_trees [, samples_pct ]]]])

Learn more about syntax conventions.

Parameters

Name Type Required Description
features_cols dynamic ✔️ An array containing the names of the columns that are used for the multivariate anomaly detection model.
anomaly_col string ✔️ The name of the column to store the detected anomalies.
score_col string The name of the column to store the scores of the anomalies.
anomalies_pct real A real number in the range [0-50] specifying the expected percentage of anomalies in the data. Default value: 4%.
num_trees int The number of isolation trees to build for each time series. Default value: 100.
samples_pct real A real number in the range [0-100] specifying the percentage of samples used to build each tree. Default value: 100%, i.e. use the full series.

Function definition

You can define the function by either embedding its code as a query-defined function, or creating it as a stored function in your database, as follows:

Define the function using the following let statement. No permissions are required.

Important

A let statement can't run on its own. It must be followed by a tabular expression statement. To run a working example of series_mv_if_anomalies_fl(), see Example.

// Define function
let series_mv_if_anomalies_fl=(tbl:(*), features_cols:dynamic, anomaly_col:string, score_col:string='', anomalies_pct:real=4.0, num_trees:int=100, samples_pct:real=100.0)
{
    let kwargs = bag_pack('features_cols', features_cols, 'anomaly_col', anomaly_col, 'score_col', score_col, 'anomalies_pct', anomalies_pct, 'num_trees', num_trees, 'samples_pct', samples_pct);
    let code = ```if 1:
        from sklearn.ensemble import IsolationForest
        features_cols = kargs['features_cols']
        anomaly_col = kargs['anomaly_col']
        score_col = kargs['score_col']
        anomalies_pct = kargs['anomalies_pct']
        num_trees = kargs['num_trees']
        samples_pct = kargs['samples_pct']
        dff = df[features_cols]
        iforest = IsolationForest(contamination=anomalies_pct/100.0, random_state=0, n_estimators=num_trees, max_samples=samples_pct/100.0)
        for i in range(len(dff)):
            dffi = dff.iloc[[i], :]
            dffe = dffi.explode(features_cols)
            iforest.fit(dffe)
            df.loc[i, anomaly_col] = (iforest.predict(dffe) < 0).astype(int).tolist()
            if score_col != '':
                df.loc[i, score_col] = iforest.decision_function(dffe).tolist()
        result = df
    ```;
    tbl
    | evaluate hint.distribution=per_node python(typeof(*), code, kwargs)
};
// Write your query to use the function here.

Example

The following example uses the invoke operator to run the function.

To use a query-defined function, invoke it after the embedded function definition.

// Define function
let series_mv_if_anomalies_fl=(tbl:(*), features_cols:dynamic, anomaly_col:string, score_col:string='', anomalies_pct:real=4.0, num_trees:int=100, samples_pct:real=100.0)
{
    let kwargs = bag_pack('features_cols', features_cols, 'anomaly_col', anomaly_col, 'score_col', score_col, 'anomalies_pct', anomalies_pct, 'num_trees', num_trees, 'samples_pct', samples_pct);
    let code = ```if 1:
        from sklearn.ensemble import IsolationForest
        features_cols = kargs['features_cols']
        anomaly_col = kargs['anomaly_col']
        score_col = kargs['score_col']
        anomalies_pct = kargs['anomalies_pct']
        num_trees = kargs['num_trees']
        samples_pct = kargs['samples_pct']
        dff = df[features_cols]
        iforest = IsolationForest(contamination=anomalies_pct/100.0, random_state=0, n_estimators=num_trees, max_samples=samples_pct/100.0)
        for i in range(len(dff)):
            dffi = dff.iloc[[i], :]
            dffe = dffi.explode(features_cols)
            iforest.fit(dffe)
            df.loc[i, anomaly_col] = (iforest.predict(dffe) < 0).astype(int).tolist()
            if score_col != '':
                df.loc[i, score_col] = iforest.decision_function(dffe).tolist()
        result = df
    ```;
    tbl
    | evaluate hint.distribution=per_node python(typeof(*), code, kwargs)
};
// Usage
normal_2d_with_anomalies
| extend anomalies=dynamic(null), scores=dynamic(null)
| invoke series_mv_if_anomalies_fl(pack_array('x', 'y'), 'anomalies', 'scores', anomalies_pct=8, num_trees=1000)
| extend anomalies=series_multiply(40, anomalies)
| render timechart

Output

The table normal_2d_with_anomalies contains a set of 3 time series. Each time series has two-dimensional normal distribution with daily anomalies added at midnight, 8am, and 4pm respectively. You can create this sample dataset using an example query.

Graph showing multivariate anomalies on a time chart.

To view the data as a scatter chart, replace the usage code with the following:

normal_2d_with_anomalies
| extend anomalies=dynamic(null)
| invoke series_mv_if_anomalies_fl(pack_array('x', 'y'), 'anomalies')
| where name == 'TS1'
| project x, y, anomalies
| mv-expand x to typeof(real), y to typeof(real), anomalies to typeof(string)
| render scatterchart with(series=anomalies)

Graph showing multivariate anomalies on a scatter chart.

You can see that on TS2 most of the anomalies occurring at 8am were detected using this multivariate model.