Επεξεργασία

Κοινή χρήση μέσω


series_monthly_decompose_anomalies_fl()

Applies to: ✅ Microsoft FabricAzure Data ExplorerAzure MonitorMicrosoft Sentinel

Detect anomalous points in a daily series with monthly seasonality.

The function series_monthly_decompose_anomalies_fl() is a user-defined function (UDF) that detects anomalies in multiple time series that have monthly seasonality. The function is built on top of series_decompose_anomalies(). The challenge is that the length of a month is variable between 28 to 31 days, so building a baseline by using series_decompose_anomalies() out of the box detects fixed seasonality thus fails to match spikes or other patterns that occur in the 1st or other day in each month.

Syntax

series_monthly_decompose_anomalies_fl(threshold)

Learn more about syntax conventions.

Parameters

Name Type Required Description
threshold real Anomaly threshold. Default is 1.5.

Function definition

You can define the function by either embedding its code as a query-defined function, or creating it as a stored function in your database, as follows:

Define the function using the following let statement. No permissions are required.

Important

A let statement can't run on its own. It must be followed by a tabular expression statement. To run a working example of series_clean_anomalies_fl(), see Example.

let series_monthly_decompose_anomalies_fl=(tbl:(_key:string, _date:datetime, _val:real), threshold:real=1.5)
{
    let _tbl=materialize(tbl
    | extend _year=getyear(_date), _dom = dayofmonth(_date), _moy=monthofyear(_date), _doy=dayofyear(_date)
    | extend _vdoy = 31*(_moy-1)+_dom                  //  virtual day of year (assuming all months have 31 days)
    );
    let median_tbl = _tbl | summarize p50=percentiles(_val, 50) by _key, _dom;
    let keys = _tbl | summarize by _key | extend dummy=1;
    let years = _tbl | summarize by _year | extend dummy=1;
    let vdoys = range _vdoy from 0 to 31*12-1 step 1 | extend _moy=_vdoy/31+1, _vdom=_vdoy%31+1, _vdoy=_vdoy+1 | extend dummy=1
    | join kind=fullouter years on dummy | join kind=fullouter keys on dummy | project-away dummy, dummy1, dummy2;
    vdoys
    | join kind=leftouter _tbl on _key, _year, _vdoy
    | project-away _key1, _year1, _moy1, _vdoy1
    | extend _adoy=31*12*_year+_doy, _vadoy = 31*12*_year+_vdoy
    | partition by _key (as T
        | where _vadoy >= toscalar(T | summarize (_adoy, _vadoy)=arg_min(_adoy, _vadoy) | project _vadoy) and 
          _vadoy <= toscalar(T | summarize (_adoy, _vadoy)=arg_max(_adoy, _vadoy) | project _vadoy)
    )
    | join kind=inner median_tbl on _key, $left._vdom == $right._dom
    | extend _vval = coalesce(_val, p50)
    //| order by _key asc, _vadoy asc     //  for debugging
    | make-series _vval=avg(_vval), _date=any(_date) default=datetime(null) on _vadoy step 1 by _key
    | extend (anomalies, score, baseline) = series_decompose_anomalies(_vval, threshold, 31)
    | mv-expand _date to typeof(datetime), _vval to typeof(real), _vadoy to typeof(long), anomalies to typeof(int), score to typeof(real), baseline to typeof(real)
    | project-away _vadoy
    | project-rename _val=_vval
    | where isnotnull(_date)
};
// Write your query to use the function here.

Example

The input table must contain _key, _date and _val columns. The query builds a set of time series of _val per each _key and adds anomalies, score and baseline columns.

To use a query-defined function, invoke it after the embedded function definition.

let series_monthly_decompose_anomalies_fl=(tbl:(_key:string, _date:datetime, _val:real), threshold:real=1.5)
{
    let _tbl=materialize(tbl
    | extend _year=getyear(_date), _dom = dayofmonth(_date), _moy=monthofyear(_date), _doy=dayofyear(_date)
    | extend _vdoy = 31*(_moy-1)+_dom                  //  virtual day of year (assuming all months have 31 days)
    );
    let median_tbl = _tbl | summarize p50=percentiles(_val, 50) by _key, _dom;
    let keys = _tbl | summarize by _key | extend dummy=1;
    let years = _tbl | summarize by _year | extend dummy=1;
    let vdoys = range _vdoy from 0 to 31*12-1 step 1 | extend _moy=_vdoy/31+1, _vdom=_vdoy%31+1, _vdoy=_vdoy+1 | extend dummy=1
    | join kind=fullouter years on dummy | join kind=fullouter keys on dummy | project-away dummy, dummy1, dummy2;
    vdoys
    | join kind=leftouter _tbl on _key, _year, _vdoy
    | project-away _key1, _year1, _moy1, _vdoy1
    | extend _adoy=31*12*_year+_doy, _vadoy = 31*12*_year+_vdoy
    | partition by _key (as T
        | where _vadoy >= toscalar(T | summarize (_adoy, _vadoy)=arg_min(_adoy, _vadoy) | project _vadoy) and 
          _vadoy <= toscalar(T | summarize (_adoy, _vadoy)=arg_max(_adoy, _vadoy) | project _vadoy)
    )
    | join kind=inner median_tbl on _key, $left._vdom == $right._dom
    | extend _vval = coalesce(_val, p50)
    //| order by _key asc, _vadoy asc     //  for debugging
    | make-series _vval=avg(_vval), _date=any(_date) default=datetime(null) on _vadoy step 1 by _key
    | extend (anomalies, score, baseline) = series_decompose_anomalies(_vval, threshold, 31)
    | mv-expand _date to typeof(datetime), _vval to typeof(real), _vadoy to typeof(long), anomalies to typeof(int), score to typeof(real), baseline to typeof(real)
    | project-away _vadoy
    | project-rename _val=_vval
    | where isnotnull(_date)
};
demo_monthly_ts
| project _key=key, _date=ts, _val=val
| invoke series_monthly_decompose_anomalies_fl()
| project-rename key=_key, ts=_date, val=_val
| render anomalychart with(anomalycolumns=anomalies, xcolumn=ts, ycolumns=val)

Output

Series A with monthly anomalies:

Graph of time series 'A' with monthly anomalies.

Series B with monthly anomalies:

Graph of time series 'B' with monthly anomalies.