Κοινή χρήση μέσω


Manage Databricks workspaces using Terraform

This article shows how to manage resources in an Azure Databricks workspace using the Databricks Terraform provider.

The following configuration blocks initialize the most common variables, databricks_spark_version, databricks_node_type, and databricks_current_user.

terraform {
  required_providers {
    databricks = {
      source  = "databricks/databricks"
    }
  }
}

provider "databricks" {}

data "databricks_current_user" "me" {}
data "databricks_spark_version" "latest" {}
data "databricks_node_type" "smallest" {
  local_disk = true
}

Standard functionality

These resources do not require administrative privileges. More documentation is available at the dedicated pages databricks_secret_scope, databricks_token, databricks_secret, databricks_notebook, databricks_job, databricks_cluster, databricks_cluster_policy, databricks_instance_pool.

resource "databricks_secret_scope" "this" {
  name = "demo-${data.databricks_current_user.me.alphanumeric}"
}

resource "databricks_token" "pat" {
  comment          = "Created from ${abspath(path.module)}"
  lifetime_seconds = 3600
}

resource "databricks_secret" "token" {
  string_value = databricks_token.pat.token_value
  scope        = databricks_secret_scope.this.name
  key          = "token"
}

resource "databricks_notebook" "this" {
  path     = "${data.databricks_current_user.me.home}/Terraform"
  language = "PYTHON"
  content_base64 = base64encode(<<-EOT
    token = dbutils.secrets.get('${databricks_secret_scope.this.name}', '${databricks_secret.token.key}')
    print(f'This should be redacted: {token}')
    EOT
  )
}

resource "databricks_job" "this" {
  name = "Terraform Demo (${data.databricks_current_user.me.alphanumeric})"

  task {
    task_key = "demo_task"
    new_cluster {
      num_workers   = 1
      spark_version = data.databricks_spark_version.latest.id
      node_type_id  = data.databricks_node_type.smallest.id
    }
    notebook_task {
      notebook_path = databricks_notebook.this.path
    }
  }

  email_notifications {}
}

resource "databricks_cluster" "this" {
  cluster_name = "Exploration (${data.databricks_current_user.me.alphanumeric})"
  spark_version           = data.databricks_spark_version.latest.id
  instance_pool_id        = databricks_instance_pool.smallest_nodes.id
  autotermination_minutes = 20
  autoscale {
    min_workers = 1
    max_workers = 10
  }
}

resource "databricks_cluster_policy" "this" {
  name = "Minimal (${data.databricks_current_user.me.alphanumeric})"
  definition = jsonencode({
    "dbus_per_hour" : {
      "type" : "range",
      "maxValue" : 10
    },
    "autotermination_minutes" : {
      "type" : "fixed",
      "value" : 20,
      "hidden" : true
    }
  })
}

resource "databricks_instance_pool" "smallest_nodes" {
  instance_pool_name = "Smallest Nodes (${data.databricks_current_user.me.alphanumeric})"
  min_idle_instances = 0
  max_capacity       = 30
  node_type_id       = data.databricks_node_type.smallest.id
  preloaded_spark_versions = [
    data.databricks_spark_version.latest.id
  ]

  idle_instance_autotermination_minutes = 20
}

output "notebook_url" {
  value = databricks_notebook.this.url
}

output "job_url" {
  value = databricks_job.this.url
}

Workspace security

Managing security requires administrative privileges. More documentation is available at the dedicated pages databricks_secret_acl, databricks_group, databricks_user, databricks_group_member, databricks_permissions.

resource "databricks_secret_acl" "spectators" {
  principal  = databricks_group.spectators.display_name
  scope      = databricks_secret_scope.this.name
  permission = "READ"
}

resource "databricks_group" "spectators" {
  display_name = "Spectators (by ${data.databricks_current_user.me.alphanumeric})"
}

resource "databricks_user" "dummy" {
  user_name    = "dummy+${data.databricks_current_user.me.alphanumeric}@example.com"
  display_name = "Dummy ${data.databricks_current_user.me.alphanumeric}"
}

resource "databricks_group_member" "a" {
  group_id  = databricks_group.spectators.id
  member_id = databricks_user.dummy.id
}

resource "databricks_permissions" "notebook" {
  notebook_path = databricks_notebook.this.id
  access_control {
    user_name        = databricks_user.dummy.user_name
    permission_level = "CAN_RUN"
  }
  access_control {
    group_name       = databricks_group.spectators.display_name
    permission_level = "CAN_READ"
  }
}

resource "databricks_permissions" "job" {
  job_id = databricks_job.this.id
  access_control {
    user_name        = databricks_user.dummy.user_name
    permission_level = "IS_OWNER"
  }
  access_control {
    group_name       = databricks_group.spectators.display_name
    permission_level = "CAN_MANAGE_RUN"
  }
}

resource "databricks_permissions" "cluster" {
  cluster_id = databricks_cluster.this.id
  access_control {
    user_name        = databricks_user.dummy.user_name
    permission_level = "CAN_RESTART"
  }
  access_control {
    group_name       = databricks_group.spectators.display_name
    permission_level = "CAN_ATTACH_TO"
  }
}

resource "databricks_permissions" "policy" {
  cluster_policy_id = databricks_cluster_policy.this.id
  access_control {
    group_name       = databricks_group.spectators.display_name
    permission_level = "CAN_USE"
  }
}

resource "databricks_permissions" "pool" {
  instance_pool_id = databricks_instance_pool.smallest_nodes.id
  access_control {
    group_name       = databricks_group.spectators.display_name
    permission_level = "CAN_ATTACH_TO"
  }
}

Storage

Depending on your preferences and needs, you can

Advanced configuration

More documentation is available at the dedicated pages for the databricks_workspace_conf and databricks_ip_access_list resources.

data "http" "my" {
  url = "https://ifconfig.me"
}

resource "databricks_workspace_conf" "this" {
  custom_config = {
    "enableIpAccessLists": "true"
  }
}

resource "databricks_ip_access_list" "only_me" {
  label = "only ${data.http.my.body} is allowed to access workspace"
  list_type = "ALLOW"
  ip_addresses = ["${data.http.my.body}/32"]
  depends_on = [databricks_workspace_conf.this]
}