Winsock Socketstatusbenachrichtigungen
Einführung
Die SOCKET-Statusbenachrichtigungs-APIs in der folgenden Tabelle bieten Ihnen eine skalierbare und effiziente Möglichkeit, Benachrichtigungen über Änderungen des Socketzustands zu erhalten (effizient sowohl in Bezug auf CPU als auch Arbeitsspeicher). Dies umfasst Benachrichtigungen über Dinge wie nicht blockierende Lesevorgänge, nicht blockierende Schreibvorgänge, Fehlerbedingungen und andere Informationen.
API | BESCHREIBUNG |
---|---|
ProcessSocketNotifications-Funktion | Ordnet eine Reihe von Sockets einem Vervollständigungsport zu und ruft alle Benachrichtigungen ab, die bereits für diesen Port ausstehen. Nach der Zuordnung empfängt der Vervollständigungsport die angegebenen Socketstatusbenachrichtigungen. |
SOCK_NOTIFY_REGISTRATION Struktur | Stellt informationen dar, die für die ProcessSocketNotifications-Funktion bereitgestellt werden. |
SocketNotificationRetrieveEvents-Funktion | Diese Inlinehilfsfunktion dient zum Abrufen der Ereignismaske aus einer OVERLAPPED_ENTRY. |
Der Workflow beginnt damit, dass Sie Sockets einem E/A-Vervollständigungsport zuordnen (ProcessSocketNotifications und SOCK_NOTIFY_REGISTRATION). Danach liefert der Port Informationen zu Änderungen des Socketzustands mithilfe der üblichen E/A-Vervollständigungs-Portabfragemethoden.
Diese APIs ermöglichen eine einfache Konstruktion plattformunabhängiger Abstraktionen. Daher werden persistente und One-Shot- sowie Level- und Edge-ausgelöste Flags unterstützt. Beispielsweise sind Registrierungen mit one-shot-Level-Triggern das empfohlene Muster für Multithreadserver.
Empfehlungen
Diese APIs bieten eine skalierbare Alternative zu WSAPoll und ausgewählten APIs.
Sie sind eine Alternative zu überlappenden Socket-E/A-E/A-Anschlüssen , die mit E/A-Vervollständigungsports verwendet werden, und vermeiden die Notwendigkeit permanenter E/A-Puffer pro Socket. In einem Szenario, in dem E/A-Puffer pro Socket keine wichtige Überlegung sind (die Anzahl der Sockets ist relativ niedrig oder werden ständig verwendet), können überlappende Socket-E/A aufgrund einer geringeren Anzahl von Kernelübergängen sowie eines einfacheren Modells weniger Aufwand verursachen.
Ein Socket kann nur einem einzelnen E/A-Abschlussport zugeordnet sein. Ein Socket kann nur einmal mit einem E/A-Abschlussport registriert werden. Um die Vervollständigungsschlüssel zu ändern, heben Sie die Registrierung der Benachrichtigung auf, warten Sie auf die SOCK_NOTIFY_EVENT_REMOVE-Nachricht (siehe die Themen ProcessSocketNotifications und SocketNotificationRetrieveEvents ), und registrieren Sie den Socket dann erneut.
Um zu vermeiden, dass noch verwendeter Arbeitsspeicher freigegeben wird, sollten Sie die zugeordneten Datenstrukturen einer Registrierung erst freigeben, nachdem Sie die SOCK_NOTIFY_EVENT_REMOVE Benachrichtigung für die Registrierung erhalten haben. Wenn der Socketdeskriptor, der für die Registrierung für Benachrichtigungen verwendet wird, mithilfe der Closesocket-Funktion geschlossen wird, werden seine Benachrichtigungen automatisch aufgehoben. Allerdings können bereits in der Warteschlange befindliche Benachrichtigungen weiterhin übermittelt werden. Eine automatische Aufhebung der Registrierung über closesocket generiert keine SOCK_NOTIFY_EVENT_REMOVE Benachrichtigung.
Wenn Sie eine Multithreadverarbeitung wünschen, sollten Sie einen einzelnen E/A-Vervollständigungsport mit mehreren Threads verwenden, der Benachrichtigungen verarbeitet. Dadurch kann der E/A-Vervollständigungsport die Arbeit bei Bedarf über mehrere Threads hochskalieren. Vermeiden Sie mehrere E/A-Vervollständigungsports (z. B. einen pro Thread), da dieser Entwurf anfällig für Flaschenhals für einen einzelnen Thread ist, während sich andere im Leerlauf befinden.
Wenn mehrere Threads Benachrichtigungspakete mit ebenenauslösten Benachrichtigungen dequeuieren, sollte SOCK_NOTIFY_TRIGGER_ONESHOT angegeben werden, um zu vermeiden, dass mehrere Threads Benachrichtigungen für eine Zustandsänderung empfangen. Nachdem die Socketbenachrichtigung verarbeitet wurde, sollte die Benachrichtigung erneut registriert werden.
Wenn mehrere Threads Benachrichtigungspakete in einer streamorientierten Verbindung dequeuieren, bei der einzelne Nachrichten in einem einzelnen Thread verarbeitet werden müssen, sollten Sie die Verwendung von Benachrichtigungen per Ebene ausgelöste One-Shot-Benachrichtigungen in Erwägung ziehen. Dadurch wird die Wahrscheinlichkeit verringert, dass mehrere Threads Nachrichtenfragmente empfangen, die threadübergreifend neu zusammengesetzt werden müssen.
Wenn Sie Edge-ausgelöste Benachrichtigungen verwenden, empfehlen wir keine Einmaligen Benachrichtigungen, da der Socket nach dem Aktivieren der Registrierung entladen werden muss. Dies ist ein komplizierter zu implementierende Muster und teurer, da es immer einen Aufruf erfordert, der WSAEWOULDBLOCK zurückgibt.
Wenn Sie die Verbindungsakzeptanz auf einem einzelnen Listensocket hochskalieren möchten, sollten Server die AcceptEx-Funktion verwenden, anstatt Benachrichtigungen für Verbindungsanforderungen zu abonnieren. Das Akzeptieren von Verbindungen als Reaktion auf Benachrichtigungen drosselt implizit die Rate der Verbindungsakzeptanz im Verhältnis zur Verarbeitung von Anforderungen für vorhandene Verbindungen.
Im Folgenden finden Sie Codebeispiele, die einige Socketstatusbenachrichtigungsszenarien veranschaulichen. Ein Teil des Codes enthält Elemente für Ihre eigenen Anwendungen.
Allgemeiner Code
Zunächst sehen Sie hier eine Codeauflistung, die einige allgemeine Definitionen und Funktionen enthält, die von den folgenden Szenarien verwendet werden.
#include "pch.h"
#include <winsock2.h>
#pragma comment(lib, "Ws2_32")
#define SERVER_ADDRESS 0x0100007f // localhost
#define SERVER_PORT 0xffff // TODO: select an actual valid port
#define MAX_TIMEOUT 1000
#define CLIENT_LOOP_COUNT 10
typedef struct SERVER_CONTEXT {
HANDLE ioCompletionPort;
SOCKET listenerSocket;
} SERVER_CONTEXT;
typedef struct CLIENT_CONTEXT {
UINT32 transmitCount;
} CLIENT_CONTEXT;
SRWLOCK g_printLock = SRWLOCK_INIT;
VOID DestroyServerContext(_Inout_ _Post_invalid_ SERVER_CONTEXT* serverContext) {
if (serverContext->listenerSocket != INVALID_SOCKET) {
closesocket(serverContext->listenerSocket);
}
if (serverContext->ioCompletionPort != NULL) {
CloseHandle(serverContext->ioCompletionPort);
}
free(serverContext);
}
DWORD CreateServerContext(_Outptr_ SERVER_CONTEXT** serverContext) {
DWORD errorCode;
SERVER_CONTEXT* localContext = NULL;
sockaddr_in serverAddress = { };
localContext = (SERVER_CONTEXT*)malloc(sizeof(*localContext));
if (localContext == NULL) {
errorCode = ERROR_NOT_ENOUGH_MEMORY;
goto Exit;
}
ZeroMemory(localContext, sizeof(*localContext));
localContext->listenerSocket = INVALID_SOCKET;
localContext->ioCompletionPort = CreateIoCompletionPort(INVALID_HANDLE_VALUE, NULL, 0, 0);
if (localContext->ioCompletionPort == NULL) {
errorCode = GetLastError();
goto Exit;
}
localContext->listenerSocket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
if (localContext->listenerSocket == INVALID_SOCKET) {
errorCode = GetLastError();
goto Exit;
}
serverAddress.sin_family = AF_INET;
serverAddress.sin_addr.s_addr = SERVER_ADDRESS;
serverAddress.sin_port = SERVER_PORT;
if (bind(localContext->listenerSocket, (sockaddr*)&serverAddress, sizeof(serverAddress)) != 0) {
errorCode = GetLastError();
goto Exit;
}
if (listen(localContext->listenerSocket, 0) != 0) {
errorCode = GetLastError();
goto Exit;
}
*serverContext = localContext;
localContext = NULL;
errorCode = ERROR_SUCCESS;
Exit:
if (localContext != NULL) {
DestroyServerContext(localContext);
}
return errorCode;
}
// Create a socket, connect to the server, send transmitCount copies of the
// payload, then disconnect.
DWORD
WINAPI
ClientThreadRoutine(_In_ PVOID clientContextPointer) {
const UINT32 payload = 0xdeadbeef;
CLIENT_CONTEXT* clientContext = (CLIENT_CONTEXT*)clientContextPointer;
sockaddr_in serverAddress = {};
SOCKET clientSocket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
if (clientSocket == INVALID_SOCKET) {
goto Exit;
}
serverAddress.sin_family = AF_INET;
serverAddress.sin_addr.s_addr = SERVER_ADDRESS;
serverAddress.sin_port = SERVER_PORT;
if (connect(clientSocket, (sockaddr*)&serverAddress, sizeof(serverAddress)) != 0) {
goto Exit;
}
for (UINT32 Index = 0; Index < clientContext->transmitCount; Index += 1) {
if (send(clientSocket, (const char*)&payload, sizeof(payload), 0) < 0) {
goto Exit;
}
}
if (shutdown(clientSocket, SD_BOTH) != 0) {
goto Exit;
}
Exit:
if (clientSocket != INVALID_SOCKET) {
closesocket(INVALID_SOCKET);
}
free(clientContext);
return 0;
}
DWORD CreateClientThread(_In_ UINT32 transmitCount) {
DWORD errorCode = ERROR_SUCCESS;
CLIENT_CONTEXT* clientContext = NULL;
HANDLE clientThread = NULL;
clientContext = (CLIENT_CONTEXT*)malloc(sizeof(*clientContext));
if (clientContext == NULL) {
errorCode = ERROR_NOT_ENOUGH_MEMORY;
goto Exit;
}
ZeroMemory(clientContext, sizeof(*clientContext));
clientContext->transmitCount = transmitCount;
clientThread = CreateThread(NULL, 0, ClientThreadRoutine, clientContext, 0, NULL);
if (clientThread == NULL) {
errorCode = GetLastError();
goto Exit;
}
clientContext = NULL;
Exit:
if (clientContext != NULL) {
free(clientContext);
}
if (clientThread != NULL) {
CloseHandle(clientThread);
}
return errorCode;
}
VOID PrintError(DWORD errorCode) {
AcquireSRWLockExclusive(&g_printLock);
wprintf_s(L"Server thread %d encountered an error %d.", GetCurrentThreadId(), errorCode);
WCHAR errorString[512];
if (FormatMessageW(FORMAT_MESSAGE_FROM_SYSTEM,
NULL,
errorCode,
0,
errorString,
RTL_NUMBER_OF(errorString),
NULL) != 0)
{
wprintf_s(L"%s", errorString);
}
ReleaseSRWLockExclusive(&g_printLock);
}
// This routine must be used only if a single socket is registered.
DWORD DeregisterAndWait(_In_ HANDLE ioCompletionPort, _In_ SOCKET socket) {
DWORD errorCode;
SOCK_NOTIFY_REGISTRATION registration = {};
OVERLAPPED_ENTRY notification;
UINT32 notificationCount;
// Keep looping until the registration is removed, or a timeout is hit.
while (TRUE) {
registration.operation = SOCK_NOTIFY_OP_REMOVE;
registration.socket = socket;
errorCode = ProcessSocketNotifications(ioCompletionPort,
1,
®istration,
MAX_TIMEOUT,
1,
¬ification,
¬ificationCount);
if (errorCode != ERROR_SUCCESS) {
goto Exit;
}
if (registration.registrationResult != ERROR_SUCCESS) {
errorCode = registration.registrationResult;
goto Exit;
}
// Drops all non-removal notifications. Must be used only
// if a single socket is registered.
if (SocketNotificationRetrieveEvents(¬ification) & SOCK_NOTIFY_EVENT_REMOVE) {
break;
}
}
Exit:
return errorCode;
}
Einfacher Ersatz für Die Abfrage
In diesem Szenario wird eine Drop-In-Ersetzung für Anwendungen mithilfe von Umfrage (WSAPoll) oder ähnlichen APIs veranschaulicht. Es handelt sich um Singlethreads und verwendet persistente Registrierungen (nicht aus einem Schuss). Da die Registrierung nicht erneut registriert werden muss, verwendet sie GetQueuedCompletionStatusEx , um Benachrichtigungen zu löschen.
VOID SimplePollReplacement() {
DWORD errorCode;
WSADATA wsaData;
SERVER_CONTEXT* serverContext = NULL;
SOCKET tcpAcceptSocket = INVALID_SOCKET;
u_long nonBlocking = 1;
SOCKET currentSocket;
SOCK_NOTIFY_REGISTRATION registration = {};
OVERLAPPED_ENTRY notification;
ULONG notificationCount;
UINT32 events;
CHAR dataBuffer[512];
if (WSAStartup(WINSOCK_VERSION, &wsaData) != 0) {
errorCode = GetLastError();
PrintError(errorCode);
return;
}
errorCode = CreateServerContext(&serverContext);
if (errorCode != ERROR_SUCCESS) {
goto Exit;
}
errorCode = CreateClientThread(CLIENT_LOOP_COUNT);
if (errorCode != ERROR_SUCCESS) {
goto Exit;
}
tcpAcceptSocket = accept(serverContext->listenerSocket, NULL, NULL);
if (tcpAcceptSocket == INVALID_SOCKET) {
errorCode = GetLastError();
goto Exit;
}
if (ioctlsocket(tcpAcceptSocket, FIONBIO, &nonBlocking) != 0) {
errorCode = GetLastError();
goto Exit;
}
// Register the accepted connection.
registration.completionKey = (PVOID)tcpAcceptSocket;
registration.eventFilter = SOCK_NOTIFY_REGISTER_EVENT_IN | SOCK_NOTIFY_REGISTER_EVENT_HANGUP;
registration.operation = SOCK_NOTIFY_OP_ENABLE;
registration.triggerFlags = SOCK_NOTIFY_TRIGGER_LEVEL;
registration.socket = tcpAcceptSocket;
errorCode = ProcessSocketNotifications(serverContext->ioCompletionPort,
1,
®istration,
0,
0,
NULL,
NULL);
// Make sure all registrations were processed.
if (errorCode != ERROR_SUCCESS) {
goto Exit;
}
// Make sure each registration was successful.
if (registration.registrationResult != ERROR_SUCCESS) {
errorCode = registration.registrationResult;
goto Exit;
}
// Keep receiving data until the client disconnects.
while (TRUE) {
wprintf_s(L"Waiting for client action...\r\n");
if (!GetQueuedCompletionStatusEx(serverContext->ioCompletionPort,
¬ification,
1,
¬ificationCount,
MAX_TIMEOUT,
FALSE))
{
errorCode = GetLastError();
goto Exit;
}
// The completion key is the socket we supplied above.
//
// This is true only because the registration supplied the socket as the completion
// key. A more typical pattern is to supply a context pointer. This example supplies
// the socket directly, for simplicity.
//
// The events are stored in the number-of-bytes-received field.
events = SocketNotificationRetrieveEvents(¬ification);
currentSocket = (SOCKET)notification.lpCompletionKey;
if (events & SOCK_NOTIFY_EVENT_IN) {
// We don't check for a 0-size receive because we subscribed to hang-up notifications.
if (recv(currentSocket, dataBuffer, sizeof(dataBuffer), 0) < 0) {
errorCode = GetLastError();
goto Exit;
}
wprintf_s(L"Received client data.\r\n");
}
if (events & SOCK_NOTIFY_EVENT_HANGUP) {
wprintf_s(L"Client hung up. Exiting. \r\n");
break;
}
if (events & SOCK_NOTIFY_EVENT_ERR) {
wprintf_s(L"The socket was ungracefully reset or another error occurred. Exiting.\r\n");
// Obtain a more detailed error code by issuing a non-blocking receive.
recv(currentSocket, dataBuffer, sizeof(dataBuffer), 0);
errorCode = GetLastError();
goto Exit;
}
}
errorCode = ERROR_SUCCESS;
Exit:
if (errorCode != ERROR_SUCCESS) {
PrintError(errorCode);
}
if (serverContext != NULL) {
if (tcpAcceptSocket != INVALID_SOCKET) {
DeregisterAndWait(serverContext->ioCompletionPort, tcpAcceptSocket);
}
DestroyServerContext(serverContext);
}
if (tcpAcceptSocket != INVALID_SOCKET) {
closesocket(tcpAcceptSocket);
}
WSACleanup();
}
UDP-Server mit Edge-Trigger
Dies ist eine einfache Abbildung der Verwendung der APIs mit Edgetriggering.
Wichtig
Der Server muss weiterhin empfangen werden, bis er einen WSAEWOULDBLOCK empfängt. Andernfalls kann nicht sicher sein, dass eine steigende Kante beobachtet wird. Daher muss auch der Socket des Servers nicht blockierend sein.
In diesem Beispiel wird UDP verwendet, um das Fehlen einer HANGUP-Benachrichtigung zu veranschaulichen. Es erfordert einige Freiheiten bei der Annahme, dass die gängigen Helfer bei Bedarf UDP-Sockets erstellen.
// This example assumes that substantially similar helpers are available for UDP sockets.
VOID SimpleEdgeTriggeredSample() {
DWORD errorCode;
WSADATA wsaData;
SOCKET serverSocket = INVALID_SOCKET;
SOCKET currentSocket;
HANDLE ioCompletionPort = NULL;
sockaddr_in serverAddress = { };
u_long nonBlocking = 1;
SOCK_NOTIFY_REGISTRATION registration = {};
OVERLAPPED_ENTRY notification;
ULONG notificationCount;
UINT32 events;
CHAR dataBuffer[512];
UINT32 datagramCount;
int receiveResult;
if (WSAStartup(WINSOCK_VERSION, &wsaData) != 0) {
errorCode = GetLastError();
PrintError(errorCode);
return;
}
ioCompletionPort = CreateIoCompletionPort(INVALID_HANDLE_VALUE, NULL, 0, 0);
if (ioCompletionPort == NULL) {
errorCode = GetLastError();
goto Exit;
}
serverSocket = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
if (serverSocket == INVALID_SOCKET) {
errorCode = GetLastError();
goto Exit;
}
// Register the server UDP socket before binding to a port to ensure data doesn't become
// present before the registration. Otherwise, the server could miss the notification and
// hang.
//
// Edge-triggered is not recommended with one-shot due to the difficulty in re-registering.
registration.completionKey = (PVOID)serverSocket;
registration.eventFilter = SOCK_NOTIFY_EVENT_IN;
registration.operation = SOCK_NOTIFY_OP_ENABLE;
registration.triggerFlags = SOCK_NOTIFY_TRIGGER_EDGE;
registration.socket = serverSocket;
errorCode = ProcessSocketNotifications(ioCompletionPort, 1, ®istration, 0, 0, NULL, NULL);
if (errorCode != ERROR_SUCCESS) {
goto Exit;
}
if (registration.registrationResult != ERROR_SUCCESS) {
errorCode = registration.registrationResult;
goto Exit;
}
// Use non-blocking sockets with edge-triggered notifications, since the data must be
// drained before a rising edge can be observed again.
errorCode = ioctlsocket(serverSocket, FIONBIO, &nonBlocking);
if (errorCode != ERROR_SUCCESS) {
goto Exit;
}
serverAddress.sin_family = AF_INET;
serverAddress.sin_addr.s_addr = SERVER_ADDRESS;
serverAddress.sin_port = SERVER_PORT;
if (bind(serverSocket, (sockaddr*)&serverAddress, sizeof(serverAddress)) != 0) {
errorCode = GetLastError();
goto Exit;
}
// Create the client.
// While CreateClientThread connects to a TCP socket and sends data over it, for this example
// assume that CreateClientThread creates a UDP socket instead, and sends data over it.
errorCode = CreateClientThread(CLIENT_LOOP_COUNT);
if (errorCode != ERROR_SUCCESS) {
goto Exit;
}
// Receive the packets.
datagramCount = 0;
while (datagramCount < CLIENT_LOOP_COUNT) {
wprintf_s(L"Waiting for client action...\r\n");
if (!GetQueuedCompletionStatusEx(ioCompletionPort,
¬ification,
1,
¬ificationCount,
MAX_TIMEOUT,
FALSE))
{
errorCode = GetLastError();
goto Exit;
}
// The completion key is the socket we supplied above.
//
// This is true only because the registration supplied the socket as the completion
// key. A more typical pattern is to supply a context pointer. This example supplies
// the socket directly, for simplicity.
//
// The events are the integer value of the overlapped pointer.
events = SocketNotificationRetrieveEvents(¬ification);
currentSocket = (SOCKET)notification.lpCompletionKey;
if (events & SOCK_NOTIFY_EVENT_ERR) {
// Obtain a more detailed error code by issuing a non-blocking receive.
recv(currentSocket, dataBuffer, sizeof(dataBuffer), 0);
errorCode = GetLastError();
goto Exit;
}
if ((events & SOCK_NOTIFY_EVENT_IN) == 0) {
continue;
}
// Keep looping receiving data until the read would block, otherwise the edge may not
// have been reset.
while (TRUE) {
receiveResult = recv(currentSocket, dataBuffer, sizeof(dataBuffer), 0);
if (receiveResult < 0) {
errorCode = GetLastError();
if (errorCode != WSAEWOULDBLOCK) {
goto Exit;
}
break;
}
datagramCount += 1;
wprintf_s(L"Received client data.\r\n");
}
}
wprintf_s(L"Received all data. Exiting... \r\n");
errorCode = ERROR_SUCCESS;
Exit:
if (errorCode != ERROR_SUCCESS) {
PrintError(errorCode);
}
if (serverSocket != INVALID_SOCKET) {
if (ioCompletionPort != NULL) {
DeregisterAndWait(ioCompletionPort, serverSocket);
}
closesocket(serverSocket);
}
if (ioCompletionPort != NULL) {
CloseHandle(ioCompletionPort);
}
WSACleanup();
}
Server mit mehreren Threads
In diesem Beispiel wird ein realistischeres Multithread-Verwendungsmuster veranschaulicht, das die Funktionen des E/A-Vervollständigungsports verwendet, um die Arbeit auf mehrere Serverthreads zu verteilen. Der Server verwendet one-shot level-triggering, um zu vermeiden, dass mehrere Threads Benachrichtigungen für denselben Socket empfangen, und um jedem Thread die Möglichkeit zu geben, empfangene Daten nacheinander abzuladen.
Außerdem werden einige gängige Muster veranschaulicht, die mit dem Vervollständigungsport verwendet werden. Der Vervollständigungsschlüssel wird verwendet, um einen Kontextzeiger pro Socket anzugeben. Der Kontextzeiger verfügt über einen Header, der den Typ des verwendeten Sockets beschreibt, sodass mehrere Sockettypen an einem einzelnen Vervollständigungsport verwendet werden können. Kommentare im Beispiel zeigen, dass beliebige Vervollständigungen dequeuiert werden können (genau wie bei der GetQueuedCompletionStatusEx-Funktion ), nicht nur Socketbenachrichtigungen. Die PostQueuedCompletionStatus-API wird verwendet, um Nachrichten an Threads zu posten und sie zu reaktivieren, ohne auf das Eintreffen einer Socketbenachrichtigung warten zu müssen.
Schließlich veranschaulicht das Beispiel einige der Feinheiten des ordnungsgemäßen Aufhebens und Bereinigens von Socketkontexten in einer Threadworkload. In diesem Beispiel gehört der Socketkontext implizit dem Thread, der die Benachrichtigung empfängt. Der Thread behält den Besitz, wenn die Benachrichtigung nicht registriert werden kann.
#define CLIENT_THREAD_COUNT 100
// The I/O completion port infrastructure ensures that the system isn't over-subscribed by
// ensuring server-side threads block if they exceed the number of logical processors. If the
// machine has more than 16 logical processors, then this can be observed by increasing this number.
#define SERVER_THREAD_COUNT 16
#define SERVER_DEQUEUE_COUNT 3
#define SERVER_EXIT_KEY ((ULONG_PTR)-1)
typedef struct SERVER_THREAD_CONTEXT {
SERVER_CONTEXT* commonContext;
SRWLOCK stateLock;
_Guarded_by_(stateLock) UINT32 deregisterCount;
_Guarded_by_(stateLock) BOOLEAN shouldExit;
} SERVER_THREAD_CONTEXT;
typedef enum SOCKET_TYPE {
SOCKET_TYPE_LISTENER,
SOCKET_TYPE_ACCEPT
} SOCKET_TYPE;
typedef struct SOCKET_CONTEXT {
SOCKET_TYPE socketType;
SOCKET socket;
} SOCKET_CONTEXT;
VOID CancelServerThreadsAsync(_Inout_ SERVER_THREAD_CONTEXT* serverThreadContext) {
AcquireSRWLockExclusive(&serverThreadContext->stateLock);
serverThreadContext->shouldExit = TRUE;
ReleaseSRWLockExclusive(&serverThreadContext->stateLock);
}
VOID IndicateServerThreadExit(_In_ HANDLE ioCompletionPort) {
// Notify a server thread that it needs to exit. It can then notify the other threads when it
// exits.
//
// If this fails, then server threads may hang, and this program will never terminate. That
// is an unrecoverable error.
if (!PostQueuedCompletionStatus(ioCompletionPort, 0, SERVER_EXIT_KEY, NULL)) {
RaiseFailFastException(NULL, NULL, 0);
}
}
VOID DestroySocketContext(_Inout_ _Post_invalid_ SOCKET_CONTEXT* socketContext) {
if (socketContext->socket != INVALID_SOCKET) {
closesocket(socketContext->socket);
}
free(socketContext);
}
DWORD AcceptConnection(_In_ SOCKET listenSocket, _Outptr_ SOCKET_CONTEXT** socketContextOut) {
DWORD errorCode;
SOCKET_CONTEXT* socketContext = NULL;
socketContext = (SOCKET_CONTEXT*)malloc(sizeof(*socketContext));
if (socketContext == NULL) {
errorCode = ERROR_NOT_ENOUGH_MEMORY;
goto Exit;
}
ZeroMemory(socketContext, sizeof(*socketContext));
socketContext->socketType = SOCKET_TYPE_ACCEPT;
socketContext->socket = accept(listenSocket, NULL, NULL);
if (socketContext->socket == INVALID_SOCKET) {
errorCode = GetLastError();
goto Exit;
}
*socketContextOut = socketContext;
socketContext = NULL;
Exit:
if (socketContext != NULL) {
_ASSERT(errorCode != ERROR_SUCCESS);
DestroySocketContext(socketContext);
}
return errorCode;
}
DWORD
WINAPI
ServerThreadRoutine(_In_ PVOID serverThreadContextPointer) {
DWORD errorCode;
SERVER_THREAD_CONTEXT* serverThreadContext;
HANDLE ioCompletionPort;
// Accepting a connection requires two registrations: one to re-enable the listening socket
// notification, and one to register the newly-accepted connection.
SOCK_NOTIFY_REGISTRATION registrationBuffer[SERVER_DEQUEUE_COUNT * 2];
UINT32 registrationCount;
SOCK_NOTIFY_REGISTRATION* registration;
OVERLAPPED_ENTRY notifications[SERVER_DEQUEUE_COUNT];
UINT32 notificationCount;
UINT32 events;
SOCKET_CONTEXT* socketContext;
SOCKET_CONTEXT* acceptedContext;
BOOLEAN shouldExit;
CHAR dataBuffer[512];
serverThreadContext = (SERVER_THREAD_CONTEXT*)serverThreadContextPointer;
ioCompletionPort = serverThreadContext->commonContext->ioCompletionPort;
// Boot-strap the loop process.
registrationCount = 0;
// Keep looping, processing notifications until exit has been requested.
while (TRUE) {
AcquireSRWLockExclusive(&serverThreadContext->stateLock);
shouldExit = serverThreadContext->shouldExit;
ReleaseSRWLockExclusive(&serverThreadContext->stateLock);
if (shouldExit) {
goto Exit;
}
AcquireSRWLockExclusive(&g_printLock);
wprintf_s(L"Server thread %d waiting for client action...\r\n", GetCurrentThreadId());
ReleaseSRWLockExclusive(&g_printLock);
// Process notifications and re-register one-shot notifications that were processed on a
// previous iteration.
errorCode = ProcessSocketNotifications(ioCompletionPort,
registrationCount,
(registrationCount == 0) ? NULL : registrationBuffer,
MAX_TIMEOUT,
RTL_NUMBER_OF(notifications),
notifications,
¬ificationCount);
// TODO: Production code should handle failure better. This can fail due to transient memory conditions, or due to
// invalid input such as a bad handle. Retrying in case the memory conditions abate is
// a reasonable strategy.
if (errorCode != ERROR_SUCCESS) {
goto Exit;
}
// Check whether any registrations failed, and attempt to clean up if they did.
errorCode = ERROR_SUCCESS;
for (UINT32 i = 0; i < registrationCount; i += 1) {
registration = ®istrationBuffer[i];
if (registration->registrationResult == ERROR_SUCCESS) {
continue;
}
// Preserve the first failure code.
if (errorCode == ERROR_SUCCESS) {
errorCode = registration->registrationResult;
}
// All the registrations are oneshot, so if the registration failed, then only this thread
// has access to the context. Attempt to clean up fully:
// - The listening socket is owned by the main thread, so ignore that.
// - If the socket hasn't been registered, just free its memory.
// - Otherwise, attempt to deregister it.
socketContext = (SOCKET_CONTEXT*)registration->completionKey;
if (socketContext->socketType == SOCKET_TYPE_LISTENER) {
continue;
}
// Best-effort de-registration. In case of failure, simply get rid of the socket and
// context. This is safe to do because the notification for the socket can't be enabled.
// Either it was never registered in the first place, or re-registration failed, and it
// was previously disabled by nature of being a one-shot registration.
registration->operation = SOCK_NOTIFY_OP_REMOVE;
errorCode = ProcessSocketNotifications(ioCompletionPort,
1,
registration,
0,
0,
NULL,
NULL);
if ((errorCode != ERROR_SUCCESS) ||
(registration->registrationResult != ERROR_SUCCESS)) {
DestroySocketContext(socketContext);
}
}
// Process the notifications. Many will need to be re-enabled because they are one-shot,
// so ensure that we can build that incrementally.
registrationCount = 0;
ZeroMemory(registrationBuffer, sizeof(registrationBuffer));
for (UINT32 i = 0; i < notificationCount; i += 1) {
if (notifications[i].lpCompletionKey == SERVER_EXIT_KEY) {
_ASSERT(serverThreadContext->shouldExit);
// On exit, this thread will post the next exit message.
errorCode = ERROR_SUCCESS;
goto Exit;
}
socketContext = (SOCKET_CONTEXT*)notifications[i].lpCompletionKey;
events = SocketNotificationRetrieveEvents(¬ifications[i]);
// Process the socket notification, taking socket-specific actions.
switch (socketContext->socketType) {
case SOCKET_TYPE_LISTENER:
// Accepting connections in response to notifications implicitly throttles
// the rate at which incoming connections are accepted, and limits scale-out for
// new connection acceptance. Consider using AcceptEx if greater scaling of
//connection acceptance is desired.
// Perform an accept regardless of the notification. The only possible notifications
// are for available connections or error conditions. Any possible error conditions
// will be processed as part of the accept.
errorCode = AcceptConnection(socketContext->socket, &acceptedContext);
if (errorCode == ERROR_SUCCESS) {
// Register the accepted connection.
registration = ®istrationBuffer[registrationCount];
registration->socket = acceptedContext->socket;
registration->completionKey = acceptedContext;
registration->eventFilter = SOCK_NOTIFY_EVENT_IN | SOCK_NOTIFY_EVENT_HANGUP;
registration->operation =
SOCK_NOTIFY_OP_ENABLE;
registration->triggerFlags = SOCK_NOTIFY_TRIGGER_ONESHOT | SOCK_NOTIFY_TRIGGER_LEVEL;
registrationCount += 1;
}
// Re-arm the existing listening socket registration.
registration = ®istrationBuffer[registrationCount];
registration->socket = socketContext->socket;
registration->completionKey = socketContext;
registration->eventFilter = SOCK_NOTIFY_EVENT_IN;
registration->operation =
SOCK_NOTIFY_OP_ENABLE;
registration->triggerFlags = SOCK_NOTIFY_TRIGGER_ONESHOT | SOCK_NOTIFY_TRIGGER_LEVEL;
registrationCount += 1;
break;
case SOCKET_TYPE_ACCEPT:
// The registration was removed. Clean up the context.
if (events & SOCK_NOTIFY_EVENT_REMOVE) {
AcquireSRWLockExclusive(&serverThreadContext->stateLock);
serverThreadContext->deregisterCount += 1;
if (serverThreadContext->deregisterCount >= CLIENT_THREAD_COUNT) {
serverThreadContext->shouldExit = TRUE;
}
ReleaseSRWLockExclusive(&serverThreadContext->stateLock);
DestroySocketContext(socketContext);
continue;
}
registration = ®istrationBuffer[registrationCount];
// If a hangup occurred, then remove the registration.
if (events & SOCK_NOTIFY_EVENT_HANGUP) {
registration->eventFilter = 0;
registration->operation = SOCK_NOTIFY_OP_REMOVE;
}
// Receive data.
if (events & (SOCK_NOTIFY_EVENT_IN | SOCK_NOTIFY_EVENT_ERR)) {
// TODO: Handle errors (for example, due to connection reset). The error from recv can
// be used to retrieve the underlying socket for a SOCK_NOTIFY_EVENT_ERR.
if (recv(socketContext->socket, dataBuffer, sizeof(dataBuffer), 0) < 0) {
registration->operation = SOCK_NOTIFY_OP_REMOVE;
registration->eventFilter = 0;
}
else {
registration->operation |=
SOCK_NOTIFY_OP_ENABLE;
registration->triggerFlags =
SOCK_NOTIFY_TRIGGER_ONESHOT | SOCK_NOTIFY_TRIGGER_LEVEL;
registration->eventFilter = SOCK_NOTIFY_EVENT_IN | SOCK_NOTIFY_EVENT_HANGUP;
}
}
registration->socket = socketContext->socket;
registration->completionKey = socketContext;
registrationCount += 1;
break;
// TODO:
//
// Other (potentially non-socket) I/O completion can be processed here. For instance,
// this could also be processing disk I/O. The contexts will need to have a common
// header that can be used to differentiate between the different context types,
// similar to how the listening and accepted sockets are differentiated.
//
// case ... :
default:
_ASSERT(!"Unexpected socket type!");
errorCode = ERROR_UNIDENTIFIED_ERROR;
goto Exit;
}
}
}
errorCode = ERROR_SUCCESS;
Exit:
// If an error occurred, then ensure the other threads know they should exit.
// TODO: use an error handling strategy that isn't just exiting.
if (errorCode != ERROR_SUCCESS) {
PrintError(errorCode);
CancelServerThreadsAsync(serverThreadContext);
}
// Wake a remaining server thread.
IndicateServerThreadExit(ioCompletionPort);
AcquireSRWLockExclusive(&g_printLock);
wprintf_s(L"Server thread %d exited\r\n", GetCurrentThreadId());
ReleaseSRWLockExclusive(&g_printLock);
return errorCode;
}
VOID MultiThreadedTcpServer() {
DWORD errorCode;
WSADATA wsaData;
SERVER_THREAD_CONTEXT serverContext = { NULL, SRWLOCK_INIT, 0, FALSE };
SOCKET_CONTEXT listenContext = {};
SOCK_NOTIFY_REGISTRATION registration = {};
HANDLE serverThreads[SERVER_THREAD_COUNT] = {};
UINT32 serverThreadCount = 0;
if (WSAStartup(WINSOCK_VERSION, &wsaData) != 0) {
errorCode = GetLastError();
PrintError(errorCode);
return;
}
listenContext.socket = INVALID_SOCKET;
listenContext.socketType = SOCKET_TYPE_LISTENER;
errorCode = CreateServerContext(&serverContext.commonContext);
if (errorCode != ERROR_SUCCESS) {
goto Exit;
}
// Register the listening socket with the I/O completion port so the server threads are notified
// of incoming connections.
listenContext.socket = serverContext.commonContext->listenerSocket;
registration.completionKey = &listenContext;
registration.eventFilter = SOCK_NOTIFY_EVENT_IN;
registration.operation = SOCK_NOTIFY_OP_ENABLE;
registration.triggerFlags = SOCK_NOTIFY_TRIGGER_LEVEL | SOCK_NOTIFY_TRIGGER_PERSISTENT;
registration.socket = listenContext.socket;
errorCode = ProcessSocketNotifications(serverContext.commonContext->ioCompletionPort,
1,
®istration,
0,
0,
NULL,
NULL);
if (errorCode != ERROR_SUCCESS) {
goto Exit;
}
// Create the server threads. These are likely over-subscribed, but the I/O completion port
// ensures that they scale appropriately.
while (serverThreadCount < RTL_NUMBER_OF(serverThreads)) {
serverThreads[serverThreadCount] =
CreateThread(NULL, 0, ServerThreadRoutine, &serverContext, 0, NULL);
if (serverThreads[serverThreadCount] == NULL) {
errorCode = GetLastError();
goto Exit;
}
}
// Create the client threads, which are badly over-subscribed.
for (UINT32 i = 0; i < CLIENT_THREAD_COUNT; i += 1) {
errorCode = CreateClientThread(CLIENT_LOOP_COUNT);
if (errorCode != ERROR_SUCCESS) {
goto Exit;
}
}
errorCode = ERROR_SUCCESS;
Exit:
if (errorCode != ERROR_SUCCESS) {
PrintError(errorCode);
// In case of error, ensure that all server threads know to exit.
if (serverContext.commonContext != NULL) {
CancelServerThreadsAsync(&serverContext);
IndicateServerThreadExit(serverContext.commonContext->ioCompletionPort);
}
}
if (serverThreadCount > 0) {
wprintf_s(L"Waiting for %d server threads to exit...\r\n", serverThreadCount);
errorCode = WaitForMultipleObjects(serverThreadCount, serverThreads, TRUE, INFINITE);
_ASSERT(errorCode == ERROR_SUCCESS);
}
// TODO: In case of failure, clean up remaining state. For example, Accepted connections can be kept in
// a global list, which can be closed from this thread.
for (UINT32 i = 0; i < serverThreadCount; i += 1) {
CloseHandle(serverThreads[i]);
}
DestroyServerContext(serverContext.commonContext);
WSACleanup();
}