Freigeben über


rxFastForest: Fast Forest

Machine Learning: Fast Forest

Verwendung

  rxFastForest(formula = NULL, data, type = c("binary", "regression"),
    numTrees = 100, numLeaves = 20, minSplit = 10, exampleFraction = 0.7,
    featureFraction = 0.7, splitFraction = 0.7, numBins = 255,
    firstUsePenalty = 0, gainConfLevel = 0, trainThreads = 8,
    randomSeed = NULL, mlTransforms = NULL, mlTransformVars = NULL,
    rowSelection = NULL, transforms = NULL, transformObjects = NULL,
    transformFunc = NULL, transformVars = NULL, transformPackages = NULL,
    transformEnvir = NULL, blocksPerRead = rxGetOption("blocksPerRead"),
    reportProgress = rxGetOption("reportProgress"), verbose = 2,
    computeContext = rxGetOption("computeContext"),
    ensemble = ensembleControl(), ...)

Argumente

formula

Die Formel, wie in rxFormula beschrieben. Interaktionsterme und F() werden derzeit in MicrosoftML nicht unterstützt.

data

Ein Datenquellenobjekt oder eine Zeichenfolge, die eine .xdf-Datei oder ein Datenrahmenobjekt angibt.

type

Eine Zeichenfolge, die den Typ „Fast Tree“ bezeichnet

  • "binary" für die standardmäßige binäre Fast Tree-Klassifizierung oder
  • "regression" für Fast Tree-Regression.

numTrees

Gibt die Gesamtanzahl von Entscheidungsstrukturen an, die im Ensemble erstellt werden sollen. Mit einer höheren Anzahl von Entscheidungsstrukturen erzielen Sie u. U. eine bessere Abdeckung, allerdings verlängert sich dadurch auch die Trainingsdauer. Der Standardwert ist 100.

numLeaves

Die maximale Anzahl von Blättern (Endknoten) an, die in einem Baum erstellt werden können. Höhere Werte können zwar den Baum vergrößern und die Genauigkeit verbessern, bergen aber das Risiko einer Überanpassung und erfordern längere Trainingszeiten. Der Standardwert lautet 20.

minSplit

Mindestanzahl von Trainingsinstanzen an, die für die Erstellung eines Blatts erforderlich sind. Das heißt, die minimale Anzahl von Dokumenten, die in einem Blatt eines Regressionsbaums aus den Daten mit untergeordneten Stichproben zulässig sind. Eine „Aufteilung“ bedeutet, dass Features auf jeder Ebene des Baums (Knotens) zufällig aufgeteilt werden. Der Standardwert ist 10.

exampleFraction

Der Anteil zufällig gewählter Instanzen, die für jeden Baum verwendet werden sollen. Der Standardwert ist 0,7.

featureFraction

Der Anteil zufällig gewählter Features, die für jeden Baum verwendet werden sollen. Der Standardwert ist 0,7.

splitFraction

Der Anteil zufällig gewählter Features, die für jede Aufteilung verwendet werden sollen. Der Standardwert ist 0,7.

numBins

Maximale Anzahl unterschiedlicher Werte (Bins) pro Feature. Der Standardwert ist 255.

firstUsePenalty

Das Feature verwendet zuerst den Strafkoeffizienten. Der Standardwert ist 0.

gainConfLevel

Konfidenzanforderung für die Baumanpassung (muss im Bereich [0,1] liegen). Der Standardwert ist 0.

trainThreads

Die Anzahl der Threads zum Trainieren des Modells. Falls NULL angegeben wird, wird die Anzahl der zu verwendenden Threads intern bestimmt. Der Standardwert ist NULL.

randomSeed

Gibt den zufälligen Ausgangswert an. Der Standardwert ist NULL.

mlTransforms

Gibt eine Liste von MicrosoftML-Transformationen an, die vor dem Training für die Daten erfolgen sollen, oder NULL, wenn keine Transformationen erfolgen sollen. Für unterstützte Transformationen siehe featurizeText, categorical und categoricalHash. Diese Transformationen werden nach allen angegebenen R-Transformationen ausgeführt. Der Standardwert ist NULL.

mlTransformVars

Gibt einen Zeichenvektor von Variablennamen an, die in mlTransforms verwendet werden sollen, oder NULL, wenn keine verwendet werden sollen. Standardwert: NULL.

rowSelection

Gibt die Zeilen (Beobachtungen) aus dem Dataset an, die vom Modell verwendet werden sollen, mit dem Namen einer logischen Variablen aus dem Dataset (in Anführungszeichen) oder mit einem logischen Ausdruck unter Verwendung von Variablen im Dataset. rowSelection = "old" verwendet z. B. nur Beobachtungen, bei denen TRUE der Wert der Variablen old ist. rowSelection = (age > 20) & (age < 65) & (log(income) > 10) verwendet nur Beobachtungen, bei denen der Wert der Variablen age zwischen 20 und 65 liegt und der Wert von log der Variablen income größer als 10 ist. Die Zeilenauswahl erfolgt nach der Verarbeitung von Datentransformationen (siehe die Argumente transforms oder transformFunc). Wie bei allen Ausdrücken kann rowSelection außerhalb des Funktionsaufrufs mit der expression-Funktion definiert werden.

transforms

Ein Ausdruck der Form list(name = expression, ``...), der die erste Runde der Variablentransformationen darstellt. Wie bei allen Ausdrücken kann transforms (oder rowSelection) außerhalb des Funktionsaufrufs mit der expression-Funktion definiert werden.

transformObjects

Eine benannte Liste, die Objekte enthält, auf die mit transforms, transformsFunc und rowSelection verwiesen werden kann.

transformFunc

Die Variablentransformationsfunktionen. Weitere Informationen finden Sie unter „rxTransform“.

transformVars

Ein Zeichenvektor von Eingabedatasetvariablen, die für die Transformationsfunktion erforderlich sind. Weitere Informationen finden Sie unter „rxTransform“.

transformPackages

Ein Zeichenvektor, der zusätzliche R-Pakete (außerhalb der in rxGetOption("transformPackages") angegebenen) angibt, die für die Verwendung in Variablentransformationsfunktionen verfügbar gemacht und im Voraus geladen werden sollen. Zum Beispiel solche, die explizit in RevoScaleR-Funktionen über ihre Argumente transforms und transformFunc definiert sind oder solche, die implizit über ihre Argumente formula oder rowSelection definiert sind. Das Argument transformPackages kann auch NULL lauten, was angibt, dass keine Pakete außerhalb von rxGetOption("transformPackages") im Voraus geladen werden.

transformEnvir

Eine benutzerdefinierte Umgebung, die als übergeordnete Umgebung für alle intern entwickelten Umgebungen dient und für die Transformation von Variablendaten verwendet wird. Falls transformEnvir = NULL, wird stattdessen eine neue „hash“-Umgebung mit der übergeordneten baseenv() verwendet.

blocksPerRead

Gibt die Anzahl der Blöcke an, die für jeden Datenblock gelesen werden, der aus der Datenquelle gelesen wird.

reportProgress

Ein ganzzahliger Wert, der die Berichtsebene für den Status der Zeilenverarbeitung angibt:

  • 0: Es wird kein Status gemeldet.
  • 1: Die Anzahl der verarbeiteten Zeilen wird ausgegeben und aktualisiert.
  • 2: Verarbeitete Zeilen und Zeitsteuerungen werden gemeldet.
  • 3: Verarbeitete Zeilen und alle Zeitsteuerungen werden gemeldet.

verbose

Ein ganzzahliger Wert, der die gewünschte Ausgabemenge angibt. Falls 0, erfolgt während der Berechnungen keine ausführliche Ausgabe. Ganzzahlige Werte von 1 bis 4 liefern zunehmend mehr Informationen.

computeContext

Legt den Kontext fest, in dem Berechnungen erfolgen, angegeben mit einer gültigen Angabe für RxComputeContext. Derzeit werden lokale und RxInSqlServer-Computekontexte unterstützt.

ensemble

Steuerungsparameter für die Bildung von Ensembles.

...

Zusätzliche Argumente, die direkt an die Microsoft-Compute-Engine übergeben werden sollen.

Details

Entscheidungsbäume sind nicht-parametrische Modelle, die eine Reihe
von einfachen Tests auf Eingaben anwenden. Dieses Entscheidungsverfahren ordnet sie Ausgaben aus dem Trainingsdataset zu, deren Eingaben der zu verarbeitenden Instanz ähnlich waren. Bei jedem Knoten der binären Baumstruktur wird eine Entscheidung auf Grundlage des Maßes der Ähnlichkeit getroffen, das jede Instanz rekursiv durch die Zweige des Baums zuordnet, bis der entsprechende Blattknoten erreicht und die Ausgabeentscheidung zurückgegeben wird.

Entscheidungsbäume haben mehrere Vorteile:

Sie sind während des Trainings und der Vorhersage effizient sowohl bei der Berechnung als auch bei der Arbeitsspeicherauslastung.

Sie können nicht lineare Entscheidungsgrenzen darstellen.

Sie führen eine integrierte Featureauswahl und -klassifizierung durch.

Sie sind resilient gegen störende Features.

Die Fast Forest-Regression ist eine Implementierung von Random Forest und Quantile Regression Forest unter Verwendung des Regressionsbaum-Lernmodus in rxFastTrees. Dieses Modell besteht aus einem Ensemble von Entscheidungsbäumen. Jeder Baum in einem Entscheidungswald gibt mittels Prognose eine Gauß-Verteilung aus. Es erfolgt eine Aggregation über das Baumensemble, um eine Gauß-Verteilung zu finden, die der kombinierten Verteilung für alle Bäume im Modell am nächsten kommt.

Dieser Entscheidungswaldklassifizierer besteht aus einem Ensemble von Entscheidungsbäumen. Im Allgemeinen bieten Ensemblemodelle eine bessere Abdeckung und Genauigkeit als einzelne Entscheidungsbäume. Jeder Baum in einem Entscheidungswald gibt mittels Prognose eine Gauß-Verteilung aus. Es erfolgt eine Aggregation über das Baumensemble, um eine Gauß-Verteilung zu finden, die der kombinierten Verteilung für alle Bäume im Modell am nächsten kommt.

Wert

rxFastForest: Ein rxFastForest-Objekt mit dem trainierten Modell.

FastForest: Ein Learnerspezifikationsobjekt der Klasse maml für den Fast Forest-Trainer.

Notizen

Dieser Algorithmus ist ein Multithread-Algorithmus, der immer versucht, das gesamte Dataset in den Arbeitsspeicher zu laden.

Autor(en)

Microsoft Corporation Microsoft Technical Support

References

Wikipedia: Random forest

Quantile regression forest

From Stumps to Trees to Forests

Siehe auch

rxFastTrees, rxFastLinear, rxLogisticRegression, rxNeuralNet, rxOneClassSvm, featurizeText, categorical, categoricalHash, rxPredict.mlModel.

Beispiele


 # Estimate a binary classification forest
 infert1 <- infert
 infert1$isCase = (infert1$case == 1)
 forestModel <- rxFastForest(formula = isCase ~ age + parity + education + spontaneous + induced,
         data = infert1)

 # Create text file with per-instance results using rxPredict
 txtOutFile <- tempfile(pattern = "scoreOut", fileext = ".txt")
 txtOutDS <- RxTextData(file = txtOutFile)
 scoreDS <- rxPredict(forestModel, data = infert1,
    extraVarsToWrite = c("isCase", "Score"), outData = txtOutDS)

 # Print the fist ten rows   
 rxDataStep(scoreDS, numRows = 10)

 # Clean-up
 file.remove(txtOutFile)

 ######################################################################
 # Estimate a regression fast forest

 # Use the built-in data set 'airquality' to create test and train data
 DF <- airquality[!is.na(airquality$Ozone), ]  
 DF$Ozone <- as.numeric(DF$Ozone)
 randomSplit <- rnorm(nrow(DF))
 trainAir <- DF[randomSplit >= 0,]
 testAir <- DF[randomSplit < 0,]
 airFormula <- Ozone ~ Solar.R + Wind + Temp

 # Regression Fast Forest for train data
 rxFastForestReg <- rxFastForest(airFormula, type = "regression", 
     data = trainAir)  

 # Put score and model variables in data frame
 rxFastForestScoreDF <- rxPredict(rxFastForestReg, data = testAir, 
     writeModelVars = TRUE)

 # Plot actual versus predicted values with smoothed line
 rxLinePlot(Score ~ Ozone, type = c("p", "smooth"), data = rxFastForestScoreDF)