Freigeben über


microsoftml.rx_neural_network: neuronales Netz

Verwendung

microsoftml.rx_neural_network(formula: str,
    data: [revoscalepy.datasource.RxDataSource.RxDataSource,
    pandas.core.frame.DataFrame], method: ['binary', 'multiClass',
    'regression'] = 'binary', num_hidden_nodes: int = 100,
    num_iterations: int = 100,
    optimizer: [<function adadelta_optimizer at 0x0000007156EAC048>,
    <function sgd_optimizer at 0x0000007156E9FB70>] = {'Name': 'SgdOptimizer',
    'Settings': {}}, net_definition: str = None,
    init_wts_diameter: float = 0.1, max_norm: float = 0,
    acceleration: [<function avx_math at 0x0000007156E9FEA0>,
    <function clr_math at 0x0000007156EAC158>,
    <function gpu_math at 0x0000007156EAC1E0>,
    <function mkl_math at 0x0000007156EAC268>,
    <function sse_math at 0x0000007156EAC2F0>] = {'Name': 'AvxMath',
    'Settings': {}}, mini_batch_size: int = 1, normalize: ['No',
    'Warn', 'Auto', 'Yes'] = 'Auto', ml_transforms: list = None,
    ml_transform_vars: list = None, row_selection: str = None,
    transforms: dict = None, transform_objects: dict = None,
    transform_function: str = None,
    transform_variables: list = None,
    transform_packages: list = None,
    transform_environment: dict = None, blocks_per_read: int = None,
    report_progress: int = None, verbose: int = 1,
    ensemble: microsoftml.modules.ensemble.EnsembleControl = None,
    compute_context: revoscalepy.computecontext.RxComputeContext.RxComputeContext = None)

BESCHREIBUNG

Neuronale Netze für Regressionsmodellierung und für binäre Klassifizierung und Multiklassenklassifizierung

Details

Bei einem neuronalen Netz handelt es sich um eine Klasse von Vorhersagemodellen, die vom menschlichen Gehirn inspiriert wurden. Ein neuronales Netz kann als gewichteter und ausgerichteter Graph dargestellt werden. Jeder Knoten des Graphen wird als Neuron bezeichnet. Die Neuronen des Graphen werden in Ebenen angeordnet. Neuronen einer Ebene werden dabei von einer gewichteten Kante mit Neuronen der nächsten Ebene verbunden. Die Gewichtungen können 0 oder eine positive Zahl sein. Die erste Ebene wird als Eingabeebene bezeichnet, und jedes Neuron auf der Eingabeebene entspricht einem der Features. Die letzte Ebene der Funktion wird als Ausgabeebene bezeichnet. Im Fall binärer neuronaler Netze sind also zwei Ausgabeneuronen enthalten, eines für jede Klasse, deren Werte die Wahrscheinlichkeiten sind, zu den einzelnen Klassen zu gehören. Die übrigen Ebenen werden verborgene Ebenen genannt. Die Werte der Neuronen in den verborgenen Ebenen und in der Ausgabeebene werden festgelegt, indem die gewichtete Summe der Werte der Neuronen in der vorherigen Ebene berechnet wird und eine Aktivierungsfunktion auf diese gewichtete Summe angewendet wird. Das Modell eines neuronalen Netzes wird von der Struktur des dazugehörigen Graphen (der Anzahl verborgener Ebenen und der Anzahl an Neuronen in den einzelnen verborgenen Ebenen), der ausgewählten Aktivierungsfunktion und der Gewichtungen der Graphenkanten definiert. Der Algorithmus des neuronalen Netzes versucht anhand der Trainingsdaten zu lernen, welche Gewichtungen für die Kanten optimal sind.

Neuronale Netze sind zwar weithin für ihre Verwendung bei Deep Learning und der Modellierung komplexer Probleme wie Bilderkennung bekannt, sie lassen sich aber auch einfach für Regressionsprobleme anpassen. Jede Klasse statistischer Modelle kann als neuronales Netz bezeichnet werden, sofern sie adaptive Gewichtungen verwenden und eine Annäherung an nicht lineare Funktionen in ihren Eingaben darstellen können. Die Regression mit neuronalen Netzen ist besonders für Probleme geeignet, für die traditionellere Regressionsmodelle keine passende Lösung bieten.

Argumente

Formel

Die Formel, wie in „revoscalepy.rx_formula“ beschrieben. Interaktionsterme und F() werden derzeit in microsoftml nicht unterstützt.

data

Ein Datenquellenobjekt oder eine Zeichenfolge, die eine .xdf-Datei oder ein Datenrahmenobjekt angibt.

Methode

Eine Zeichenfolge, die den Typ „Fast Tree“ bezeichnet

  • "binary" für neuronale Standardnetze mit binärer Klassifizierung

  • "multiClass" für neuronale Netze mit mehrklassiger Klassifizierung

  • "regression" für neuronale Regressionsnetze

num_hidden_nodes

Dies ist die Standardanzahl verborgener Knoten im neuronalen Netz. Der Standardwert ist 100.

num_iterations

Dies ist die Anzahl an Iterationen für das vollständige Trainingsdataset. Der Standardwert ist 100.

optimizer

Dies ist eine Liste, die einen der Optimierungsalgorithmen sgd oder adaptive angibt. Diese Liste kann mithilfe von sgd_optimizer oder adadelta_optimizer erstellt werden. Der Standardwert ist sgd.

net_definition

Dies ist die Net#-Definition der Struktur des neuronalen Netzes. Weitere Informationen zur Sprache Net# finden Sie in dieser Referenz.

init_wts_diameter

Hiermit wird der Durchmesser der anfänglichen Gewichtungen festgelegt, der den Bereich angibt, aus dem die Werte für die anfänglichen Lerngewichtungen stammen. Diese Gewichtungen werden innerhalb dieses Bereichs nach dem Zufallsprinzip initialisiert. Der Standardwert ist 0,1.

max_norm

Hiermit wird eine obere Grenze angegeben, mit der die Norm des eingehenden Gewichtungsvektors für die einzelnen verborgenen Einheiten begrenzt wird. Dies kann sehr hilfreich bei maximierten neuronalen Netzen sowie in Fällen sein, in denen beim Training ungebundene Gewichtungen erzeugt werden.

Beschleunigung

Hiermit wird der Typ der Hardwarebeschleunigung angegeben, der verwendet wird. Mögliche Werte sind „sse_math“ und „gpu_math“. Es wird empfohlen, als GPU-Beschleunigung einen miniBatchSize-Wert größer als 1 zu verwenden. Wenn Sie die GPU-Beschleunigung verwenden möchten, sind zusätzliche Einrichtungsschritte erforderlich:

  • Herunterladen und Installieren der Version 6.5 des Nvidia-Toolkits „CUDA“ (Toolkit „CUDA“)

  • Herunterladen und Installieren der Bibliothek „NVidia cuDNN v2“ (Bibliothek „cudnn“)

  • Suchen des Bibliotheksverzeichnisses des Pakets „microsoftml“ durch Aufrufen von import microsoftml, os, os.path.join(microsoftml.__path__[0], "mxLibs")

  • Kopieren von cublas64_65.dll, cudart64_65.dll und cusparse64_65.dll aus dem Toolkit „CUDA“ (Version 6.5) und Einfügen im Bibliotheksverzeichnis des Pakets „microsoftml“

  • Kopieren von cudnn64_65.dll aus der Bibliothek „cuDNN v2“ und Einfügen in das Bibliotheksverzeichnis des Pakets „microsoftml“

mini_batch_size

Hiermit wird ein Wert für mini_batch_size festgelegt. Empfohlene Werte liegen in einem Bereich zwischen 1 und 256. Dieser Parameter wird nur verwendet, wenn die GPU-Beschleunigung verwendet wird. Wenn dieser Parameter auf einen höheren Wert festgelegt wird, verbessert dies die Geschwindigkeit des Trainings, es kann sich jedoch negativ auf die Genauigkeit auswirken. Der Standardwert ist 1.

normalize

Gibt den Typ der verwendeten automatischen Normalisierung an:

  • "Warn": Wenn eine Normalisierung erforderlich ist, erfolgt sie automatisch. Dies ist die Standardoption.

  • "No": Es erfolgt keine Normalisierung.

  • "Yes": Es erfolgt eine Normalisierung.

  • "Auto": Wenn eine Normalisierung erforderlich ist, wird eine Warnmeldung angezeigt, ohne dass die Normalisierung erfolgt.

Bei der Normalisierung werden unterschiedliche Datenbereiche anhand einer Standardskala neu skaliert. Die Featureskalierung stellt sicher, dass die Abstände zwischen den Datenpunkten proportional sind und ermöglicht verschiedene Optimierungsmethoden wie den Gradientenabstieg, um wesentlich schneller zu konvergieren. Wenn eine Normalisierung erfolgt, wird die Normalisierungsfunktion MaxMin verwendet. Sie normalisiert Werte im Intervall [a, b], wobei gilt: -1 <= a <= 0 und 0 <= b <= 1 und b - a = 1. Diese Normalisierungsfunktion behält geringe Datendichte bei, indem 0 zu 0 zugeordnet wird.

ml_transforms

Gibt eine Liste von MicrosoftML-Transformationen an, die vor dem Training für die Daten erfolgen sollen, oder None, wenn keine Transformationen erfolgen sollen. Unter featurize_text, categorical und categorical_hash finden Sie unterstützte Transformationen. Diese Transformationen werden nach allen angegebenen Python-Transformationen ausgeführt. Der Standardwert ist None.

ml_transform_vars

Gibt einen Zeichenvektor von Variablennamen an, die in ml_transforms verwendet werden sollen, oder None, wenn keine verwendet werden sollen. Der Standardwert ist None.

row_selection

Nicht unterstützt. Gibt die Zeilen (Beobachtungen) aus dem Dataset an, die vom Modell verwendet werden sollen, mit dem Namen einer logischen Variablen aus dem Dataset (in Anführungszeichen) oder mit einem logischen Ausdruck unter Verwendung von Variablen im Dataset. Beispiel:

  • row_selection = "old" verwendet nur Beobachtungen, bei denen True der Wert der Variablen old ist.

  • row_selection = (age > 20) & (age < 65) & (log(income) > 10) verwendet nur Beobachtungen, bei denen der Wert der Variablen age zwischen 20 und 65 liegt und der Wert von log der Variablen income größer als 10 ist.

Die Zeilenauswahl erfolgt nach der Verarbeitung von Datentransformationen (siehe die Argumente transforms oder transform_function). Wie bei allen Ausdrücken kann row_selection außerhalb des Funktionsaufrufs mit der Funktion expression definiert werden.

Transformationen

Nicht unterstützt. Ein Ausdruck der Form, die die erste Runde der Variablentransformationen darstellt. Wie bei allen Ausdrücken kann transforms (oder row_selection) außerhalb des Funktionsaufrufs mit der Funktion expression definiert werden.

transform_objects

Nicht unterstützt. Eine benannte Liste, die Objekte enthält, auf die mit transforms, transform_function und row_selection verwiesen werden kann.

transform_function

Die Variablentransformationsfunktionen.

transform_variables

Ein Zeichenvektor von Eingabedatasetvariablen, die für die Transformationsfunktion erforderlich sind.

transform_packages

Nicht unterstützt. Ein Zeichenvektor, der zusätzliche Python-Pakete (außerhalb der in RxOptions.get_option("transform_packages") angegebenen) angibt, die für die Verwendung in Variablentransformationsfunktionen verfügbar gemacht und im Voraus geladen werden sollen. Zum Beispiel solche, die explizit in revoscalepy-Funktionen über ihre Argumente transforms und transform_function definiert sind oder solche, die implizit über ihre Argumente formula oder row_selection definiert sind. Das Argument transform_packages kann auch None lauten, was angibt, dass keine Pakete außerhalb von RxOptions.get_option("transform_packages") im Voraus geladen werden.

transform_environment

Nicht unterstützt. Eine benutzerdefinierte Umgebung, die als übergeordnete Umgebung für alle intern entwickelten Umgebungen dient und für die Transformation von Variablendaten verwendet wird. Wenn transform_environment = None gilt, wird stattdessen eine neue „hash“-Umgebung mit revoscalepy.baseenv (übergeordnet) verwendet.

blocks_per_read

Gibt die Anzahl der Blöcke an, die für jeden Datenblock gelesen werden, der aus der Datenquelle gelesen wird.

report_progress

Ein ganzzahliger Wert, der die Berichtsebene für den Status der Zeilenverarbeitung angibt:

  • 0: Es wird kein Status gemeldet.

  • 1: Die Anzahl der verarbeiteten Zeilen wird ausgegeben und aktualisiert.

  • 2: Verarbeitete Zeilen und Zeitsteuerungen werden gemeldet.

  • 3: Verarbeitete Zeilen und alle Zeitsteuerungen werden gemeldet.

Ausführlich

Ein ganzzahliger Wert, der die gewünschte Ausgabemenge angibt. Falls 0, erfolgt während der Berechnungen keine ausführliche Ausgabe. Ganzzahlige Werte von 1 bis 4 liefern zunehmend mehr Informationen.

compute_context

Legt den Kontext fest, in dem Berechnungen erfolgen, angegeben mit einer gültigen Angabe für revoscalepy.RxComputeContext. Derzeit werden lokale und revoscalepy.RxInSqlServer-Computekontexte unterstützt.

ensemble

Steuerungsparameter für die Bildung von Ensembles.

Gibt zurück

Ein NeuralNetwork-Objekt mit dem trainierten Modell.

Hinweis

Dieser Algorithmus ist ein Singlethread-Algorithmus, der nicht versucht, das gesamte Dataset in den Arbeitsspeicher zu laden.

Siehe auch

adadelta_optimizer, sgd_optimizer, avx_math, clr_math, gpu_math, mkl_math, sse_math, rx_predict.

Referenzen

Wikipedia: Künstliches neuronales Netz

Beispiel für binäre Klassifizierung

'''
Binary Classification.
'''
import numpy
import pandas
from microsoftml import rx_neural_network, rx_predict
from revoscalepy.etl.RxDataStep import rx_data_step
from microsoftml.datasets.datasets import get_dataset

infert = get_dataset("infert")

import sklearn
if sklearn.__version__ < "0.18":
    from sklearn.cross_validation import train_test_split
else:
    from sklearn.model_selection import train_test_split

infertdf = infert.as_df()
infertdf["isCase"] = infertdf.case == 1
data_train, data_test, y_train, y_test = train_test_split(infertdf, infertdf.isCase)

forest_model = rx_neural_network(
    formula=" isCase ~ age + parity + education + spontaneous + induced ",
    data=data_train)
    
# RuntimeError: The type (RxTextData) for file is not supported.
score_ds = rx_predict(forest_model, data=data_test,
                     extra_vars_to_write=["isCase", "Score"])
                     
# Print the first five rows
print(rx_data_step(score_ds, number_rows_read=5))

Ausgabe:

Automatically adding a MinMax normalization transform, use 'norm=Warn' or 'norm=No' to turn this behavior off.
Beginning processing data.
Rows Read: 186, Read Time: 0, Transform Time: 0
Beginning processing data.
Beginning processing data.
Rows Read: 186, Read Time: 0, Transform Time: 0
Beginning processing data.
Beginning processing data.
Rows Read: 186, Read Time: 0, Transform Time: 0
Beginning processing data.
Using: AVX Math

***** Net definition *****
  input Data [5];
  hidden H [100] sigmoid { // Depth 1
    from Data all;
  }
  output Result [1] sigmoid { // Depth 0
    from H all;
  }
***** End net definition *****
Input count: 5
Output count: 1
Output Function: Sigmoid
Loss Function: LogLoss
PreTrainer: NoPreTrainer
___________________________________________________________________
Starting training...
Learning rate: 0.001000
Momentum: 0.000000
InitWtsDiameter: 0.100000
___________________________________________________________________
Initializing 1 Hidden Layers, 701 Weights...
Estimated Pre-training MeanError = 0.742343
Iter:1/100, MeanErr=0.680245(-8.37%), 119.87M WeightUpdates/sec
Iter:2/100, MeanErr=0.637843(-6.23%), 122.52M WeightUpdates/sec
Iter:3/100, MeanErr=0.635404(-0.38%), 122.24M WeightUpdates/sec
Iter:4/100, MeanErr=0.634980(-0.07%), 73.36M WeightUpdates/sec
Iter:5/100, MeanErr=0.635287(0.05%), 128.26M WeightUpdates/sec
Iter:6/100, MeanErr=0.634572(-0.11%), 131.05M WeightUpdates/sec
Iter:7/100, MeanErr=0.634827(0.04%), 124.27M WeightUpdates/sec
Iter:8/100, MeanErr=0.635359(0.08%), 123.69M WeightUpdates/sec
Iter:9/100, MeanErr=0.635244(-0.02%), 119.35M WeightUpdates/sec
Iter:10/100, MeanErr=0.634712(-0.08%), 127.80M WeightUpdates/sec
Iter:11/100, MeanErr=0.635105(0.06%), 122.69M WeightUpdates/sec
Iter:12/100, MeanErr=0.635226(0.02%), 98.61M WeightUpdates/sec
Iter:13/100, MeanErr=0.634977(-0.04%), 127.88M WeightUpdates/sec
Iter:14/100, MeanErr=0.634347(-0.10%), 123.25M WeightUpdates/sec
Iter:15/100, MeanErr=0.634891(0.09%), 124.27M WeightUpdates/sec
Iter:16/100, MeanErr=0.635116(0.04%), 123.06M WeightUpdates/sec
Iter:17/100, MeanErr=0.633770(-0.21%), 122.05M WeightUpdates/sec
Iter:18/100, MeanErr=0.634992(0.19%), 128.79M WeightUpdates/sec
Iter:19/100, MeanErr=0.634385(-0.10%), 122.95M WeightUpdates/sec
Iter:20/100, MeanErr=0.634752(0.06%), 127.14M WeightUpdates/sec
Iter:21/100, MeanErr=0.635043(0.05%), 123.44M WeightUpdates/sec
Iter:22/100, MeanErr=0.634845(-0.03%), 121.81M WeightUpdates/sec
Iter:23/100, MeanErr=0.634850(0.00%), 125.11M WeightUpdates/sec
Iter:24/100, MeanErr=0.634617(-0.04%), 122.18M WeightUpdates/sec
Iter:25/100, MeanErr=0.634675(0.01%), 125.69M WeightUpdates/sec
Iter:26/100, MeanErr=0.634911(0.04%), 122.44M WeightUpdates/sec
Iter:27/100, MeanErr=0.634311(-0.09%), 121.90M WeightUpdates/sec
Iter:28/100, MeanErr=0.634798(0.08%), 123.54M WeightUpdates/sec
Iter:29/100, MeanErr=0.634674(-0.02%), 127.53M WeightUpdates/sec
Iter:30/100, MeanErr=0.634546(-0.02%), 100.96M WeightUpdates/sec
Iter:31/100, MeanErr=0.634859(0.05%), 124.40M WeightUpdates/sec
Iter:32/100, MeanErr=0.634747(-0.02%), 128.21M WeightUpdates/sec
Iter:33/100, MeanErr=0.634842(0.02%), 125.82M WeightUpdates/sec
Iter:34/100, MeanErr=0.634703(-0.02%), 77.48M WeightUpdates/sec
Iter:35/100, MeanErr=0.634804(0.02%), 122.21M WeightUpdates/sec
Iter:36/100, MeanErr=0.634690(-0.02%), 112.48M WeightUpdates/sec
Iter:37/100, MeanErr=0.634654(-0.01%), 119.18M WeightUpdates/sec
Iter:38/100, MeanErr=0.634885(0.04%), 137.19M WeightUpdates/sec
Iter:39/100, MeanErr=0.634723(-0.03%), 113.80M WeightUpdates/sec
Iter:40/100, MeanErr=0.634714(0.00%), 127.50M WeightUpdates/sec
Iter:41/100, MeanErr=0.634794(0.01%), 129.54M WeightUpdates/sec
Iter:42/100, MeanErr=0.633835(-0.15%), 133.05M WeightUpdates/sec
Iter:43/100, MeanErr=0.634401(0.09%), 128.95M WeightUpdates/sec
Iter:44/100, MeanErr=0.634575(0.03%), 123.42M WeightUpdates/sec
Iter:45/100, MeanErr=0.634673(0.02%), 123.78M WeightUpdates/sec
Iter:46/100, MeanErr=0.634692(0.00%), 119.04M WeightUpdates/sec
Iter:47/100, MeanErr=0.634476(-0.03%), 122.95M WeightUpdates/sec
Iter:48/100, MeanErr=0.634583(0.02%), 97.87M WeightUpdates/sec
Iter:49/100, MeanErr=0.634706(0.02%), 121.41M WeightUpdates/sec
Iter:50/100, MeanErr=0.634564(-0.02%), 120.58M WeightUpdates/sec
Iter:51/100, MeanErr=0.634118(-0.07%), 120.17M WeightUpdates/sec
Iter:52/100, MeanErr=0.634699(0.09%), 127.27M WeightUpdates/sec
Iter:53/100, MeanErr=0.634123(-0.09%), 110.51M WeightUpdates/sec
Iter:54/100, MeanErr=0.634390(0.04%), 123.74M WeightUpdates/sec
Iter:55/100, MeanErr=0.634461(0.01%), 113.66M WeightUpdates/sec
Iter:56/100, MeanErr=0.634415(-0.01%), 118.61M WeightUpdates/sec
Iter:57/100, MeanErr=0.634453(0.01%), 114.99M WeightUpdates/sec
Iter:58/100, MeanErr=0.634478(0.00%), 104.53M WeightUpdates/sec
Iter:59/100, MeanErr=0.634010(-0.07%), 124.62M WeightUpdates/sec
Iter:60/100, MeanErr=0.633901(-0.02%), 118.93M WeightUpdates/sec
Iter:61/100, MeanErr=0.634088(0.03%), 40.46M WeightUpdates/sec
Iter:62/100, MeanErr=0.634046(-0.01%), 94.65M WeightUpdates/sec
Iter:63/100, MeanErr=0.634233(0.03%), 27.18M WeightUpdates/sec
Iter:64/100, MeanErr=0.634596(0.06%), 123.94M WeightUpdates/sec
Iter:65/100, MeanErr=0.634185(-0.06%), 125.01M WeightUpdates/sec
Iter:66/100, MeanErr=0.634469(0.04%), 119.41M WeightUpdates/sec
Iter:67/100, MeanErr=0.634333(-0.02%), 124.11M WeightUpdates/sec
Iter:68/100, MeanErr=0.634203(-0.02%), 112.68M WeightUpdates/sec
Iter:69/100, MeanErr=0.633854(-0.05%), 118.62M WeightUpdates/sec
Iter:70/100, MeanErr=0.634319(0.07%), 123.59M WeightUpdates/sec
Iter:71/100, MeanErr=0.634423(0.02%), 122.51M WeightUpdates/sec
Iter:72/100, MeanErr=0.634388(-0.01%), 126.15M WeightUpdates/sec
Iter:73/100, MeanErr=0.634230(-0.02%), 126.51M WeightUpdates/sec
Iter:74/100, MeanErr=0.634011(-0.03%), 128.32M WeightUpdates/sec
Iter:75/100, MeanErr=0.634294(0.04%), 127.48M WeightUpdates/sec
Iter:76/100, MeanErr=0.634372(0.01%), 123.51M WeightUpdates/sec
Iter:77/100, MeanErr=0.632020(-0.37%), 122.12M WeightUpdates/sec
Iter:78/100, MeanErr=0.633770(0.28%), 119.55M WeightUpdates/sec
Iter:79/100, MeanErr=0.633504(-0.04%), 124.21M WeightUpdates/sec
Iter:80/100, MeanErr=0.634154(0.10%), 125.94M WeightUpdates/sec
Iter:81/100, MeanErr=0.633491(-0.10%), 120.83M WeightUpdates/sec
Iter:82/100, MeanErr=0.634212(0.11%), 128.60M WeightUpdates/sec
Iter:83/100, MeanErr=0.634138(-0.01%), 73.58M WeightUpdates/sec
Iter:84/100, MeanErr=0.634244(0.02%), 124.08M WeightUpdates/sec
Iter:85/100, MeanErr=0.634065(-0.03%), 96.43M WeightUpdates/sec
Iter:86/100, MeanErr=0.634174(0.02%), 124.28M WeightUpdates/sec
Iter:87/100, MeanErr=0.633966(-0.03%), 125.24M WeightUpdates/sec
Iter:88/100, MeanErr=0.633989(0.00%), 130.31M WeightUpdates/sec
Iter:89/100, MeanErr=0.633767(-0.04%), 115.73M WeightUpdates/sec
Iter:90/100, MeanErr=0.633831(0.01%), 122.81M WeightUpdates/sec
Iter:91/100, MeanErr=0.633219(-0.10%), 114.91M WeightUpdates/sec
Iter:92/100, MeanErr=0.633589(0.06%), 93.29M WeightUpdates/sec
Iter:93/100, MeanErr=0.634086(0.08%), 123.31M WeightUpdates/sec
Iter:94/100, MeanErr=0.634075(0.00%), 120.99M WeightUpdates/sec
Iter:95/100, MeanErr=0.634071(0.00%), 122.49M WeightUpdates/sec
Iter:96/100, MeanErr=0.633523(-0.09%), 116.48M WeightUpdates/sec
Iter:97/100, MeanErr=0.634103(0.09%), 128.85M WeightUpdates/sec
Iter:98/100, MeanErr=0.633836(-0.04%), 123.87M WeightUpdates/sec
Iter:99/100, MeanErr=0.633772(-0.01%), 128.17M WeightUpdates/sec
Iter:100/100, MeanErr=0.633684(-0.01%), 123.65M WeightUpdates/sec
Done!
Estimated Post-training MeanError = 0.631268
___________________________________________________________________
Not training a calibrator because it is not needed.
Elapsed time: 00:00:00.2454094
Elapsed time: 00:00:00.0082325
Beginning processing data.
Rows Read: 62, Read Time: 0.001, Transform Time: 0
Beginning processing data.
Elapsed time: 00:00:00.0297006
Finished writing 62 rows.
Writing completed.
Rows Read: 5, Total Rows Processed: 5, Total Chunk Time: 0.001 seconds 
  isCase PredictedLabel     Score  Probability
0   True          False -0.689636     0.334114
1   True          False -0.710219     0.329551
2   True          False -0.712912     0.328956
3  False          False -0.700765     0.331643
4   True          False -0.689783     0.334081

Beispiel einer Multiklassen-Klassifizierung

'''
MultiClass Classification.
'''
import numpy
import pandas
from microsoftml import rx_neural_network, rx_predict
from revoscalepy.etl.RxDataStep import rx_data_step
from microsoftml.datasets.datasets import get_dataset

iris = get_dataset("iris")

import sklearn
if sklearn.__version__ < "0.18":
    from sklearn.cross_validation import train_test_split
else:
    from sklearn.model_selection import train_test_split

irisdf = iris.as_df()
irisdf["Species"] = irisdf["Species"].astype("category")
data_train, data_test, y_train, y_test = train_test_split(irisdf, irisdf.Species)

model = rx_neural_network(
    formula="  Species ~ Sepal_Length + Sepal_Width + Petal_Length + Petal_Width ",
    method="multiClass",
    data=data_train)
    
# RuntimeError: The type (RxTextData) for file is not supported.
score_ds = rx_predict(model, data=data_test,
                     extra_vars_to_write=["Species", "Score"])
                     
# Print the first five rows
print(rx_data_step(score_ds, number_rows_read=5))

Ausgabe:

Automatically adding a MinMax normalization transform, use 'norm=Warn' or 'norm=No' to turn this behavior off.
Beginning processing data.
Rows Read: 112, Read Time: 0.001, Transform Time: 0
Beginning processing data.
Beginning processing data.
Rows Read: 112, Read Time: 0, Transform Time: 0
Beginning processing data.
Beginning processing data.
Rows Read: 112, Read Time: 0, Transform Time: 0
Beginning processing data.
Using: AVX Math

***** Net definition *****
  input Data [4];
  hidden H [100] sigmoid { // Depth 1
    from Data all;
  }
  output Result [3] softmax { // Depth 0
    from H all;
  }
***** End net definition *****
Input count: 4
Output count: 3
Output Function: SoftMax
Loss Function: LogLoss
PreTrainer: NoPreTrainer
___________________________________________________________________
Starting training...
Learning rate: 0.001000
Momentum: 0.000000
InitWtsDiameter: 0.100000
___________________________________________________________________
Initializing 1 Hidden Layers, 803 Weights...
Estimated Pre-training MeanError = 1.949606
Iter:1/100, MeanErr=1.937924(-0.60%), 98.43M WeightUpdates/sec
Iter:2/100, MeanErr=1.921153(-0.87%), 96.21M WeightUpdates/sec
Iter:3/100, MeanErr=1.920000(-0.06%), 95.55M WeightUpdates/sec
Iter:4/100, MeanErr=1.917267(-0.14%), 81.25M WeightUpdates/sec
Iter:5/100, MeanErr=1.917611(0.02%), 102.44M WeightUpdates/sec
Iter:6/100, MeanErr=1.918476(0.05%), 106.16M WeightUpdates/sec
Iter:7/100, MeanErr=1.916096(-0.12%), 97.85M WeightUpdates/sec
Iter:8/100, MeanErr=1.919486(0.18%), 77.99M WeightUpdates/sec
Iter:9/100, MeanErr=1.916452(-0.16%), 95.67M WeightUpdates/sec
Iter:10/100, MeanErr=1.916024(-0.02%), 102.06M WeightUpdates/sec
Iter:11/100, MeanErr=1.917155(0.06%), 99.21M WeightUpdates/sec
Iter:12/100, MeanErr=1.918543(0.07%), 99.25M WeightUpdates/sec
Iter:13/100, MeanErr=1.919120(0.03%), 85.38M WeightUpdates/sec
Iter:14/100, MeanErr=1.917713(-0.07%), 103.00M WeightUpdates/sec
Iter:15/100, MeanErr=1.917675(0.00%), 98.70M WeightUpdates/sec
Iter:16/100, MeanErr=1.917982(0.02%), 99.10M WeightUpdates/sec
Iter:17/100, MeanErr=1.916254(-0.09%), 103.41M WeightUpdates/sec
Iter:18/100, MeanErr=1.915691(-0.03%), 102.00M WeightUpdates/sec
Iter:19/100, MeanErr=1.914844(-0.04%), 86.64M WeightUpdates/sec
Iter:20/100, MeanErr=1.919268(0.23%), 94.68M WeightUpdates/sec
Iter:21/100, MeanErr=1.918748(-0.03%), 108.11M WeightUpdates/sec
Iter:22/100, MeanErr=1.917997(-0.04%), 96.33M WeightUpdates/sec
Iter:23/100, MeanErr=1.914987(-0.16%), 82.84M WeightUpdates/sec
Iter:24/100, MeanErr=1.916550(0.08%), 99.70M WeightUpdates/sec
Iter:25/100, MeanErr=1.915401(-0.06%), 96.69M WeightUpdates/sec
Iter:26/100, MeanErr=1.916092(0.04%), 101.62M WeightUpdates/sec
Iter:27/100, MeanErr=1.916381(0.02%), 98.81M WeightUpdates/sec
Iter:28/100, MeanErr=1.917414(0.05%), 102.29M WeightUpdates/sec
Iter:29/100, MeanErr=1.917316(-0.01%), 100.17M WeightUpdates/sec
Iter:30/100, MeanErr=1.916507(-0.04%), 82.09M WeightUpdates/sec
Iter:31/100, MeanErr=1.915786(-0.04%), 98.33M WeightUpdates/sec
Iter:32/100, MeanErr=1.917581(0.09%), 101.70M WeightUpdates/sec
Iter:33/100, MeanErr=1.913680(-0.20%), 79.94M WeightUpdates/sec
Iter:34/100, MeanErr=1.917264(0.19%), 102.54M WeightUpdates/sec
Iter:35/100, MeanErr=1.917377(0.01%), 100.67M WeightUpdates/sec
Iter:36/100, MeanErr=1.912060(-0.28%), 70.37M WeightUpdates/sec
Iter:37/100, MeanErr=1.917009(0.26%), 80.80M WeightUpdates/sec
Iter:38/100, MeanErr=1.916216(-0.04%), 94.56M WeightUpdates/sec
Iter:39/100, MeanErr=1.916362(0.01%), 28.22M WeightUpdates/sec
Iter:40/100, MeanErr=1.910658(-0.30%), 100.87M WeightUpdates/sec
Iter:41/100, MeanErr=1.916375(0.30%), 85.99M WeightUpdates/sec
Iter:42/100, MeanErr=1.916257(-0.01%), 102.06M WeightUpdates/sec
Iter:43/100, MeanErr=1.914505(-0.09%), 99.86M WeightUpdates/sec
Iter:44/100, MeanErr=1.914638(0.01%), 103.11M WeightUpdates/sec
Iter:45/100, MeanErr=1.915141(0.03%), 107.62M WeightUpdates/sec
Iter:46/100, MeanErr=1.915119(0.00%), 99.65M WeightUpdates/sec
Iter:47/100, MeanErr=1.915379(0.01%), 107.03M WeightUpdates/sec
Iter:48/100, MeanErr=1.912565(-0.15%), 104.78M WeightUpdates/sec
Iter:49/100, MeanErr=1.915466(0.15%), 110.43M WeightUpdates/sec
Iter:50/100, MeanErr=1.914038(-0.07%), 98.44M WeightUpdates/sec
Iter:51/100, MeanErr=1.915015(0.05%), 96.28M WeightUpdates/sec
Iter:52/100, MeanErr=1.913771(-0.06%), 89.27M WeightUpdates/sec
Iter:53/100, MeanErr=1.911621(-0.11%), 72.67M WeightUpdates/sec
Iter:54/100, MeanErr=1.914969(0.18%), 111.17M WeightUpdates/sec
Iter:55/100, MeanErr=1.913894(-0.06%), 98.68M WeightUpdates/sec
Iter:56/100, MeanErr=1.914871(0.05%), 95.41M WeightUpdates/sec
Iter:57/100, MeanErr=1.912898(-0.10%), 80.72M WeightUpdates/sec
Iter:58/100, MeanErr=1.913334(0.02%), 103.71M WeightUpdates/sec
Iter:59/100, MeanErr=1.913362(0.00%), 99.57M WeightUpdates/sec
Iter:60/100, MeanErr=1.913915(0.03%), 106.21M WeightUpdates/sec
Iter:61/100, MeanErr=1.913310(-0.03%), 112.27M WeightUpdates/sec
Iter:62/100, MeanErr=1.913395(0.00%), 50.86M WeightUpdates/sec
Iter:63/100, MeanErr=1.912814(-0.03%), 58.91M WeightUpdates/sec
Iter:64/100, MeanErr=1.911468(-0.07%), 72.06M WeightUpdates/sec
Iter:65/100, MeanErr=1.912313(0.04%), 86.34M WeightUpdates/sec
Iter:66/100, MeanErr=1.913320(0.05%), 114.39M WeightUpdates/sec
Iter:67/100, MeanErr=1.912914(-0.02%), 105.97M WeightUpdates/sec
Iter:68/100, MeanErr=1.909881(-0.16%), 105.73M WeightUpdates/sec
Iter:69/100, MeanErr=1.911649(0.09%), 105.23M WeightUpdates/sec
Iter:70/100, MeanErr=1.911192(-0.02%), 110.24M WeightUpdates/sec
Iter:71/100, MeanErr=1.912480(0.07%), 106.86M WeightUpdates/sec
Iter:72/100, MeanErr=1.909881(-0.14%), 97.28M WeightUpdates/sec
Iter:73/100, MeanErr=1.911678(0.09%), 109.57M WeightUpdates/sec
Iter:74/100, MeanErr=1.911137(-0.03%), 91.01M WeightUpdates/sec
Iter:75/100, MeanErr=1.910706(-0.02%), 99.41M WeightUpdates/sec
Iter:76/100, MeanErr=1.910869(0.01%), 84.18M WeightUpdates/sec
Iter:77/100, MeanErr=1.911643(0.04%), 105.07M WeightUpdates/sec
Iter:78/100, MeanErr=1.911438(-0.01%), 110.12M WeightUpdates/sec
Iter:79/100, MeanErr=1.909590(-0.10%), 84.16M WeightUpdates/sec
Iter:80/100, MeanErr=1.911181(0.08%), 92.30M WeightUpdates/sec
Iter:81/100, MeanErr=1.910534(-0.03%), 110.60M WeightUpdates/sec
Iter:82/100, MeanErr=1.909340(-0.06%), 54.07M WeightUpdates/sec
Iter:83/100, MeanErr=1.908275(-0.06%), 104.08M WeightUpdates/sec
Iter:84/100, MeanErr=1.910364(0.11%), 107.19M WeightUpdates/sec
Iter:85/100, MeanErr=1.910286(0.00%), 102.55M WeightUpdates/sec
Iter:86/100, MeanErr=1.909155(-0.06%), 79.72M WeightUpdates/sec
Iter:87/100, MeanErr=1.909384(0.01%), 102.37M WeightUpdates/sec
Iter:88/100, MeanErr=1.907751(-0.09%), 105.48M WeightUpdates/sec
Iter:89/100, MeanErr=1.910164(0.13%), 102.53M WeightUpdates/sec
Iter:90/100, MeanErr=1.907935(-0.12%), 105.03M WeightUpdates/sec
Iter:91/100, MeanErr=1.909510(0.08%), 99.97M WeightUpdates/sec
Iter:92/100, MeanErr=1.907405(-0.11%), 100.03M WeightUpdates/sec
Iter:93/100, MeanErr=1.905757(-0.09%), 113.21M WeightUpdates/sec
Iter:94/100, MeanErr=1.909167(0.18%), 107.86M WeightUpdates/sec
Iter:95/100, MeanErr=1.907593(-0.08%), 106.09M WeightUpdates/sec
Iter:96/100, MeanErr=1.908358(0.04%), 111.25M WeightUpdates/sec
Iter:97/100, MeanErr=1.906484(-0.10%), 95.81M WeightUpdates/sec
Iter:98/100, MeanErr=1.908239(0.09%), 105.89M WeightUpdates/sec
Iter:99/100, MeanErr=1.908508(0.01%), 103.05M WeightUpdates/sec
Iter:100/100, MeanErr=1.904747(-0.20%), 106.81M WeightUpdates/sec
Done!
Estimated Post-training MeanError = 1.896338
___________________________________________________________________
Not training a calibrator because it is not needed.
Elapsed time: 00:00:00.1620840
Elapsed time: 00:00:00.0096627
Beginning processing data.
Rows Read: 38, Read Time: 0, Transform Time: 0
Beginning processing data.
Elapsed time: 00:00:00.0312987
Finished writing 38 rows.
Writing completed.
Rows Read: 5, Total Rows Processed: 5, Total Chunk Time: Less than .001 seconds 
      Species   Score.0   Score.1   Score.2
0  versicolor  0.350161  0.339557  0.310282
1      setosa  0.358506  0.336593  0.304901
2   virginica  0.346957  0.340573  0.312470
3   virginica  0.346685  0.340748  0.312567
4   virginica  0.348469  0.340113  0.311417

Regressionsbeispiel

'''
Regression.
'''
import numpy
import pandas
from microsoftml import rx_neural_network, rx_predict
from revoscalepy.etl.RxDataStep import rx_data_step
from microsoftml.datasets.datasets import get_dataset

attitude = get_dataset("attitude")

import sklearn
if sklearn.__version__ < "0.18":
    from sklearn.cross_validation import train_test_split
else:
    from sklearn.model_selection import train_test_split

attitudedf = attitude.as_df()
data_train, data_test = train_test_split(attitudedf)

model = rx_neural_network(
    formula="rating ~ complaints + privileges + learning + raises + critical + advance",
    method="regression",
    data=data_train)
    
# RuntimeError: The type (RxTextData) for file is not supported.
score_ds = rx_predict(model, data=data_test,
                     extra_vars_to_write=["rating"])
                     
# Print the first five rows
print(rx_data_step(score_ds, number_rows_read=5))

Ausgabe:

Automatically adding a MinMax normalization transform, use 'norm=Warn' or 'norm=No' to turn this behavior off.
Beginning processing data.
Rows Read: 22, Read Time: 0, Transform Time: 0
Beginning processing data.
Beginning processing data.
Rows Read: 22, Read Time: 0.001, Transform Time: 0
Beginning processing data.
Beginning processing data.
Rows Read: 22, Read Time: 0, Transform Time: 0
Beginning processing data.
Using: AVX Math

***** Net definition *****
  input Data [6];
  hidden H [100] sigmoid { // Depth 1
    from Data all;
  }
  output Result [1] linear { // Depth 0
    from H all;
  }
***** End net definition *****
Input count: 6
Output count: 1
Output Function: Linear
Loss Function: SquaredLoss
PreTrainer: NoPreTrainer
___________________________________________________________________
Starting training...
Learning rate: 0.001000
Momentum: 0.000000
InitWtsDiameter: 0.100000
___________________________________________________________________
Initializing 1 Hidden Layers, 801 Weights...
Estimated Pre-training MeanError = 4458.793673
Iter:1/100, MeanErr=1624.747024(-63.56%), 27.30M WeightUpdates/sec
Iter:2/100, MeanErr=139.267390(-91.43%), 30.50M WeightUpdates/sec
Iter:3/100, MeanErr=116.382316(-16.43%), 29.16M WeightUpdates/sec
Iter:4/100, MeanErr=114.947244(-1.23%), 32.06M WeightUpdates/sec
Iter:5/100, MeanErr=112.886818(-1.79%), 32.96M WeightUpdates/sec
Iter:6/100, MeanErr=112.406547(-0.43%), 30.29M WeightUpdates/sec
Iter:7/100, MeanErr=110.502757(-1.69%), 30.92M WeightUpdates/sec
Iter:8/100, MeanErr=111.499645(0.90%), 31.20M WeightUpdates/sec
Iter:9/100, MeanErr=111.895816(0.36%), 32.46M WeightUpdates/sec
Iter:10/100, MeanErr=110.171443(-1.54%), 34.61M WeightUpdates/sec
Iter:11/100, MeanErr=106.975524(-2.90%), 22.14M WeightUpdates/sec
Iter:12/100, MeanErr=107.708220(0.68%), 7.73M WeightUpdates/sec
Iter:13/100, MeanErr=105.345097(-2.19%), 28.99M WeightUpdates/sec
Iter:14/100, MeanErr=109.937833(4.36%), 31.04M WeightUpdates/sec
Iter:15/100, MeanErr=106.672340(-2.97%), 30.04M WeightUpdates/sec
Iter:16/100, MeanErr=108.474555(1.69%), 32.41M WeightUpdates/sec
Iter:17/100, MeanErr=109.449054(0.90%), 31.60M WeightUpdates/sec
Iter:18/100, MeanErr=105.911830(-3.23%), 34.05M WeightUpdates/sec
Iter:19/100, MeanErr=106.045172(0.13%), 33.80M WeightUpdates/sec
Iter:20/100, MeanErr=108.360427(2.18%), 33.60M WeightUpdates/sec
Iter:21/100, MeanErr=106.506436(-1.71%), 33.77M WeightUpdates/sec
Iter:22/100, MeanErr=99.167335(-6.89%), 32.26M WeightUpdates/sec
Iter:23/100, MeanErr=108.115797(9.02%), 25.86M WeightUpdates/sec
Iter:24/100, MeanErr=106.292283(-1.69%), 31.03M WeightUpdates/sec
Iter:25/100, MeanErr=99.397875(-6.49%), 31.33M WeightUpdates/sec
Iter:26/100, MeanErr=104.805299(5.44%), 31.57M WeightUpdates/sec
Iter:27/100, MeanErr=101.385085(-3.26%), 22.92M WeightUpdates/sec
Iter:28/100, MeanErr=100.064656(-1.30%), 35.01M WeightUpdates/sec
Iter:29/100, MeanErr=100.519013(0.45%), 32.74M WeightUpdates/sec
Iter:30/100, MeanErr=99.273143(-1.24%), 35.12M WeightUpdates/sec
Iter:31/100, MeanErr=100.465649(1.20%), 33.68M WeightUpdates/sec
Iter:32/100, MeanErr=102.402320(1.93%), 33.79M WeightUpdates/sec
Iter:33/100, MeanErr=97.517196(-4.77%), 32.32M WeightUpdates/sec
Iter:34/100, MeanErr=102.597511(5.21%), 32.46M WeightUpdates/sec
Iter:35/100, MeanErr=96.187788(-6.25%), 32.32M WeightUpdates/sec
Iter:36/100, MeanErr=101.533507(5.56%), 21.44M WeightUpdates/sec
Iter:37/100, MeanErr=99.339624(-2.16%), 21.53M WeightUpdates/sec
Iter:38/100, MeanErr=98.049306(-1.30%), 15.27M WeightUpdates/sec
Iter:39/100, MeanErr=97.508282(-0.55%), 23.21M WeightUpdates/sec
Iter:40/100, MeanErr=99.894288(2.45%), 27.94M WeightUpdates/sec
Iter:41/100, MeanErr=95.190566(-4.71%), 32.47M WeightUpdates/sec
Iter:42/100, MeanErr=91.234977(-4.16%), 31.29M WeightUpdates/sec
Iter:43/100, MeanErr=98.824414(8.32%), 32.35M WeightUpdates/sec
Iter:44/100, MeanErr=96.759533(-2.09%), 22.37M WeightUpdates/sec
Iter:45/100, MeanErr=95.275106(-1.53%), 32.09M WeightUpdates/sec
Iter:46/100, MeanErr=95.749031(0.50%), 26.49M WeightUpdates/sec
Iter:47/100, MeanErr=96.267879(0.54%), 31.81M WeightUpdates/sec
Iter:48/100, MeanErr=97.383752(1.16%), 31.01M WeightUpdates/sec
Iter:49/100, MeanErr=96.605199(-0.80%), 32.05M WeightUpdates/sec
Iter:50/100, MeanErr=96.927400(0.33%), 32.42M WeightUpdates/sec
Iter:51/100, MeanErr=96.288491(-0.66%), 28.89M WeightUpdates/sec
Iter:52/100, MeanErr=92.751171(-3.67%), 33.68M WeightUpdates/sec
Iter:53/100, MeanErr=88.655001(-4.42%), 34.53M WeightUpdates/sec
Iter:54/100, MeanErr=90.923513(2.56%), 32.00M WeightUpdates/sec
Iter:55/100, MeanErr=91.627261(0.77%), 25.74M WeightUpdates/sec
Iter:56/100, MeanErr=91.132907(-0.54%), 30.00M WeightUpdates/sec
Iter:57/100, MeanErr=95.294092(4.57%), 33.13M WeightUpdates/sec
Iter:58/100, MeanErr=90.219024(-5.33%), 31.70M WeightUpdates/sec
Iter:59/100, MeanErr=92.727605(2.78%), 30.71M WeightUpdates/sec
Iter:60/100, MeanErr=86.910488(-6.27%), 33.07M WeightUpdates/sec
Iter:61/100, MeanErr=92.350984(6.26%), 32.46M WeightUpdates/sec
Iter:62/100, MeanErr=93.208298(0.93%), 31.08M WeightUpdates/sec
Iter:63/100, MeanErr=90.784723(-2.60%), 21.19M WeightUpdates/sec
Iter:64/100, MeanErr=88.685225(-2.31%), 33.17M WeightUpdates/sec
Iter:65/100, MeanErr=91.668555(3.36%), 30.65M WeightUpdates/sec
Iter:66/100, MeanErr=82.607568(-9.88%), 29.72M WeightUpdates/sec
Iter:67/100, MeanErr=88.787842(7.48%), 32.98M WeightUpdates/sec
Iter:68/100, MeanErr=88.793186(0.01%), 34.67M WeightUpdates/sec
Iter:69/100, MeanErr=88.918795(0.14%), 14.09M WeightUpdates/sec
Iter:70/100, MeanErr=87.121434(-2.02%), 33.02M WeightUpdates/sec
Iter:71/100, MeanErr=86.865602(-0.29%), 34.87M WeightUpdates/sec
Iter:72/100, MeanErr=87.261979(0.46%), 32.34M WeightUpdates/sec
Iter:73/100, MeanErr=87.812460(0.63%), 31.35M WeightUpdates/sec
Iter:74/100, MeanErr=87.818462(0.01%), 32.54M WeightUpdates/sec
Iter:75/100, MeanErr=87.085672(-0.83%), 34.80M WeightUpdates/sec
Iter:76/100, MeanErr=85.773668(-1.51%), 35.39M WeightUpdates/sec
Iter:77/100, MeanErr=85.338703(-0.51%), 34.59M WeightUpdates/sec
Iter:78/100, MeanErr=79.370105(-6.99%), 30.14M WeightUpdates/sec
Iter:79/100, MeanErr=83.026209(4.61%), 32.32M WeightUpdates/sec
Iter:80/100, MeanErr=89.776417(8.13%), 33.14M WeightUpdates/sec
Iter:81/100, MeanErr=85.447100(-4.82%), 32.32M WeightUpdates/sec
Iter:82/100, MeanErr=83.991969(-1.70%), 22.12M WeightUpdates/sec
Iter:83/100, MeanErr=85.065064(1.28%), 30.41M WeightUpdates/sec
Iter:84/100, MeanErr=83.762008(-1.53%), 31.29M WeightUpdates/sec
Iter:85/100, MeanErr=84.217726(0.54%), 34.92M WeightUpdates/sec
Iter:86/100, MeanErr=82.395181(-2.16%), 34.26M WeightUpdates/sec
Iter:87/100, MeanErr=82.979145(0.71%), 22.87M WeightUpdates/sec
Iter:88/100, MeanErr=83.656685(0.82%), 28.51M WeightUpdates/sec
Iter:89/100, MeanErr=81.132468(-3.02%), 32.43M WeightUpdates/sec
Iter:90/100, MeanErr=81.311106(0.22%), 30.91M WeightUpdates/sec
Iter:91/100, MeanErr=81.953897(0.79%), 31.98M WeightUpdates/sec
Iter:92/100, MeanErr=79.018074(-3.58%), 33.13M WeightUpdates/sec
Iter:93/100, MeanErr=78.220412(-1.01%), 31.47M WeightUpdates/sec
Iter:94/100, MeanErr=80.833884(3.34%), 25.16M WeightUpdates/sec
Iter:95/100, MeanErr=81.550135(0.89%), 32.64M WeightUpdates/sec
Iter:96/100, MeanErr=77.785628(-4.62%), 32.54M WeightUpdates/sec
Iter:97/100, MeanErr=76.438158(-1.73%), 34.34M WeightUpdates/sec
Iter:98/100, MeanErr=79.471621(3.97%), 33.12M WeightUpdates/sec
Iter:99/100, MeanErr=76.038475(-4.32%), 33.01M WeightUpdates/sec
Iter:100/100, MeanErr=75.349164(-0.91%), 32.68M WeightUpdates/sec
Done!
Estimated Post-training MeanError = 75.768932
___________________________________________________________________
Not training a calibrator because it is not needed.
Elapsed time: 00:00:00.1178557
Elapsed time: 00:00:00.0088299
Beginning processing data.
Rows Read: 8, Read Time: 0, Transform Time: 0
Beginning processing data.
Elapsed time: 00:00:00.0293893
Finished writing 8 rows.
Writing completed.
Rows Read: 5, Total Rows Processed: 5, Total Chunk Time: 0.001 seconds 
   rating      Score
0    82.0  70.120613
1    64.0  66.344688
2    68.0  68.862373
3    58.0  68.241341
4    63.0  67.196869

Optimierer

mathematisch