Freigeben über


<algorithm> functions

 

The latest version of this topic can be found at <algorithm> functions.

adjacent_find all_of
any_of binary_search copy
copy_backward copy_if copy_n
count count_if equal
equal_range fill fill_n
find find_end find_first_of
find_if find_if_not for_each
generate generate_n includes
inplace_merge is_heap is_heap_until
is_partitioned is_permutation is_sorted
is_sorted_until iter_swap lexicographical_compare
lower_bound make_heap max
max_element merge min
min_element minmax minmax_element
mismatch move move_backward
next_permutation none_of nth_element
partial_sort partial_sort_copy partition
partition_copy partition_point pop_heap
prev_permutation push_heap random_shuffle
remove remove_copy remove_copy_if
remove_if replace replace_copy
replace_copy_if replace_if reverse
reverse_copy rotate rotate_copy
search search_n set_difference
set_intersection set_symmetric_difference set_union
sort sort_heap stable_partition
stable_sort std::shuffle swap
swap_ranges transform unique
unique_copy upper_bound

adjacent_find

Searches for two adjacent elements that are either equal or satisfy a specified condition.

template<class ForwardIterator>  
    ForwardIterator adjacent_find(  
        ForwardIterator _First,   
        ForwardIterator _Last);
  
template<class ForwardIterator , class BinaryPredicate>  
    ForwardIterator adjacent_find(  
        ForwardIterator _First,   
        ForwardIterator _Last,   
        BinaryPredicate _Comp);  

Parameters

_First
A forward iterator addressing the position of the first element in the range to be searched.

_Last
A forward iterator addressing the position one past the final element in the range to be searched.

_Comp
The binary predicate giving the condition to be satisfied by the values of the adjacent elements in the range being searched.

Return Value

A forward iterator to the first element of the adjacent pair that are either equal to each other (in the first version) or that satisfy the condition given by the binary predicate (in the second version), provided that such a pair of elements is found. Otherwise, an iterator pointing to _Last is returned.

Remarks

The adjacent_find algorithm is a nonmutating sequence algorithm. The range to be searched must be valid; all pointers must be dereferenceable and the last position is reachable from the first by incrementation. The time complexity of the algorithm is linear in the number of elements contained in the range.

The operator== used to determine the match between elements must impose an equivalence relation between its operands.

Example

// alg_adj_fnd.cpp  
// compile with: /EHsc  
#include <list>  
#include <algorithm>  
#include <iostream>  
  
// Returns whether second element is twice the first  
bool twice (int elem1, int elem2 )  
{  
   return elem1 * 2 == elem2;  
}  
  
int main()   
{  
   using namespace std;  
   list <int> L;  
   list <int>::iterator Iter;  
   list <int>::iterator result1, result2;  
  
   L.push_back( 50 );  
   L.push_back( 40 );  
   L.push_back( 10 );  
   L.push_back( 20 );  
   L.push_back( 20 );  
  
   cout << "L = ( " ;  
   for ( Iter = L.begin( ) ; Iter != L.end( ) ; Iter++ )  
      cout << *Iter << " ";  
   cout << ")" << endl;  
  
   result1 = adjacent_find( L.begin( ), L.end( ) );  
   if ( result1 == L.end( ) )  
      cout << "There are not two adjacent elements that are equal."  
           << endl;  
   else  
      cout << "There are two adjacent elements that are equal."  
           << "\n They have a value of "  
           <<  *( result1 ) << "." << endl;  
  
   result2 = adjacent_find( L.begin( ), L.end( ), twice );  
   if ( result2 == L.end( ) )  
      cout << "There are not two adjacent elements where the "  
           << " second is twice the first." << endl;  
   else  
      cout << "There are two adjacent elements where "  
           << "the second is twice the first."  
           << "\n They have values of " << *(result2++);  
      cout << " & " << *result2 << "." << endl;  
}  
L = ( 50 40 10 20 20 )  
There are two adjacent elements that are equal.  
 They have a value of 20.  
There are two adjacent elements where the second is twice the first.  
 They have values of 10 & 20.  

all_of

Returns true when a condition is present at each element in the given range.

template<class InputIterator, class Predicate>  
    bool all_of(  
        InputIterator_First,   
        InputIterator_Last,   
        BinaryPredicate_Comp);  

Parameters

_First
An input iterator that indicates where to start to check for a condition. The iterator marks where a range of elements starts.

_Last
An input iterator that indicates the end of the range of elements to check for a condition.

_Comp
A condition to test for. This is a user-defined predicate function object that defines the condition to be satisfied by an element being checked. A predicate takes a single argument and returns true or false.

Return Value

Returns true if the condition is detected at each element in the indicated range, and false if the condition is not detected at least one time.

Remarks

The template function returns true only if, for each N in the range [0,Last - _First), the predicate _Comp(*(_First + N)) is true.

any_of

Returns true when a condition is present at least once in the specified range of elements.

template<class InputIterator, class UnaryPredicate>  
    bool any_of(  
        InputIterator _First,   
        InputIterator _Last,   
        UnaryPredicate _Comp);  

Parameters

_First
An input iterator that indicates where to start checking a range of elements for a condition.

_Last
An input iterator that indicates the end of the range of elements to check for a condition.

_Comp
A condition to test for. This is provided by a user-defined predicate function object. The predicate defines the condition to be satisfied by the element being tested. A predicate takes a single argument and returns true or false.

Return Value

Returns true if the condition is detected at least once in the indicated range, false if the condition is never detected.

Remarks

The template function returns true only if, for some N in the range

[0,  _Last  -  _First ), the predicate _Comp``(*(``_First + N)) is true.

Tests whether there is an element in a sorted range that is equal to a specified value or that is equivalent to it in a sense specified by a binary predicate.

template<class ForwardIterator, class Type>      
    bool binary_search(
        ForwardIterator first, 
        ForwardIterator last, 
        const Type& value);  
  
template<class ForwardIterator,  class Type,  class BinaryPredicate>  
    bool binary_search(
        ForwardIterator first, 
        ForwardIterator last, 
        const Type& value, 
        BinaryPredicate comp);  
  

Parameters

first
A forward iterator addressing the position of the first element in the range to be searched.

last
A forward iterator addressing the position one past the final element in the range to be searched.

value
The value required to be matched by the value of the element or that must satisfy the condition with the element value specified by the binary predicate.

comp
User-defined predicate function object that defines sense in which one element is less than another. A binary predicate takes two arguments and returns truewhen satisfied and false when not satisfied.

Return Value

true if an element is found in the range that is equal or equivalent to the specified value; otherwise, false.

Remarks

The sorted source range referenced must be valid; all pointers must be dereferenceable and, within the sequence, the last position must be reachable from the first by incrementation.

The sorted range must each be arranged as a precondition to the application of the binary_search algorithm in accordance with the same ordering as is to be used by the algorithm to sort the combined ranges.

The source ranges are not modified by binary_search.

The value types of the forward iterators need to be less-than comparable to be ordered, so that, given two elements, it may be determined either that they are equivalent (in the sense that neither is less than the other) or that one is less than the other. This results in an ordering between the nonequivalent elements

The complexity of the algorithm is logarithmic for random-access iterators and linear otherwise, with the number of steps proportional to ( lastfirst).

Example

// alg_bin_srch.cpp  
// compile with: /EHsc  
#include <list>  
#include <vector>  
#include <algorithm>  
#include <functional>      // greater<int>( )  
#include <iostream>  
  
// Return whether modulus of elem1 is less than modulus of elem2  
bool mod_lesser( int elem1, int elem2 )  
{  
    if (elem1 < 0)  
        elem1 = - elem1;  
    if (elem2 < 0)  
        elem2 = - elem2;  
    return elem1 < elem2;  
}  
  
int main( )  
{  
    using namespace std;  
  
    list <int> List1;  
  
    List1.push_back( 50 );  
    List1.push_back( 10 );  
    List1.push_back( 30 );  
    List1.push_back( 20 );  
    List1.push_back( 25 );  
    List1.push_back( 5 );  
  
    List1.sort();  
  
    cout << "List1 = ( " ;  
    for ( auto Iter : List1 )  
        cout << Iter << " ";  
    cout << ")" << endl;  
  
    // default binary search for 10  
    if( binary_search(List1.begin(), List1.end(), 10) )  
        cout << "There is an element in list List1 with a value equal to 10."  
        << endl;  
    else  
        cout << "There is no element in list List1 with a value equal to 10."  
        << endl;  
  
    // a binary_search under the binary predicate greater  
    List1.sort(greater<int>());  
    if( binary_search(List1.begin(), List1.end(), 10, greater<int>()) )  
        cout << "There is an element in list List1 with a value greater than 10 "  
        << "under greater than." << endl;  
    else  
        cout << "No element in list List1 with a value greater than 10 "  
        << "under greater than." << endl;  
  
    // a binary_search under the user-defined binary predicate mod_lesser  
    vector<int> v1;  
  
    for( auto i = -2; i <= 4; ++i )  
    {  
        v1.push_back(i);  
    }  
  
    sort(v1.begin(), v1.end(), mod_lesser);  
  
    cout << "Ordered using mod_lesser, vector v1 = ( " ;  
    for( auto Iter : v1 )  
        cout << Iter << " ";  
    cout << ")" << endl;  
  
    if( binary_search(v1.begin(), v1.end(), -3, mod_lesser) )  
        cout << "There is an element with a value equivalent to -3 "  
        << "under mod_lesser." << endl;  
    else  
        cout << "There is not an element with a value equivalent to -3 "  
        << "under mod_lesser." << endl;  
}   

copy

Assigns the values of elements from a source range to a destination range, iterating through the source sequence of elements and assigning them new positions in a forward direction.

template<class InputIterator, class OutputIterator>  
    OutputIterator copy(
        InputIterator _First, 
        InputIterator _Last, 
        OutputIterator _DestBeg);  

Parameters

_First
An input iterator addressing the position of the first element in the source range.

_Last
An input iterator addressing the position that is one past the final element in the source range.

_DestBeg
An output iterator addressing the position of the first element in the destination range.

Return Value

An output iterator addressing the position that is one past the final element in the destination range, that is, the iterator addresses _Result + ( _Last_First ).

Remarks

The source range must be valid and there must be sufficient space at the destination to hold all the elements being copied.

Because the algorithm copies the source elements in order beginning with the first element, the destination range can overlap with the source range provided the _Last position of the source range is not contained in the destination range. copy can be used to shift elements to the left but not the right, unless there is no overlap between the source and destination ranges. To shift to the right any number of positions, use the copy_backward algorithm.

The copy algorithm only modifies values pointed to by the iterators, assigning new values to elements in the destination range. It cannot be used to create new elements and cannot insert elements into an empty container directly.

Example

// alg_copy.cpp  
// compile with: /EHsc  
#include <vector>  
#include <algorithm>  
#include <iostream>  
  
int main() {  
   using namespace std;  
   vector <int> v1, v2;  
   vector <int>::iterator Iter1, Iter2;  
  
   int i;  
   for ( i = 0 ; i <= 5 ; i++ )  
      v1.push_back( 10 * i );  
  
   int ii;  
   for ( ii = 0 ; ii <= 10 ; ii++ )  
      v2.push_back( 3 * ii );  
  
   cout << "v1 = ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")" << endl;  
  
   cout << "v2 = ( " ;  
   for ( Iter2 = v2.begin( ) ; Iter2 != v2.end( ) ; Iter2++ )  
      cout << *Iter2 << " ";  
   cout << ")" << endl;  
  
   // To copy the first 3 elements of v1 into the middle of v2  
   copy( v1.begin( ), v1.begin( ) + 3, v2.begin( ) + 4 );  
  
   cout << "v2 with v1 insert = ( " ;  
   for ( Iter2 = v2.begin( ) ; Iter2 != v2.end( ) ; Iter2++ )  
      cout << *Iter2 << " ";  
   cout << ")" << endl;  
  
   // To shift the elements inserted into v2 two positions  
   // to the left  
   copy( v2.begin( )+4, v2.begin( ) + 7, v2.begin( ) + 2 );  
  
   cout << "v2 with shifted insert = ( " ;  
   for ( Iter2 = v2.begin( ) ; Iter2 != v2.end( ) ; Iter2++ )  
      cout << *Iter2 << " ";  
   cout << ")" << endl;  
}  
v1 = ( 0 10 20 30 40 50 )  
v2 = ( 0 3 6 9 12 15 18 21 24 27 30 )  
v2 with v1 insert = ( 0 3 6 9 0 10 20 21 24 27 30 )  
v2 with shifted insert = ( 0 3 0 10 20 10 20 21 24 27 30 )  

copy_backward

Assigns the values of elements from a source range to a destination range, iterating through the source sequence of elements and assigning them new positions in a backward direction.

template<class BidirectionalIterator1, class BidirectionalIterator2>  
    BidirectionalIterator2 copy_backward(
        BidirectionalIterator1 _First, 
        BidirectionalIterator1 _Last, 
        BidirectionalIterator2 _DestEnd);  

Parameters

_First
A bidirectional iterator addressing the position of the first element in the source range.

_Last
A bidirectional iterator addressing the position that is one past the final element in the source range.

_DestEnd
A bidirectional iterator addressing the position of one past the final element in the destination range.

Return Value

An output iterator addressing the position that is one past the final element in the destination range, that is, the iterator addresses _DestEnd – ( _Last_First ).

Remarks

The source range must be valid and there must be sufficient space at the destination to hold all the elements being copied.

The copy_backward algorithm imposes more stringent requirements than that the copy algorithm. Both its input and output iterators must be bidirectional.

The copy_backward and move_backward algorithms are the only Standard Template Library algorithms designating the output range with an iterator pointing to the end of the destination range.

Because the algorithm copies the source elements in order beginning with the last element, the destination range can overlap with the source range provided the _First position of the source range is not contained in the destination range. copy_backward can be used to shift elements to the right but not the left, unless there is no overlap between the source and destination ranges. To shift to the left any number of positions, use the copy algorithm.

The copy_backward algorithm only modifies values pointed to by the iterators, assigning new values to elements in the destination range. It cannot be used to create new elements and cannot insert elements into an empty container directly.

Example

// alg_copy_bkwd.cpp  
// compile with: /EHsc  
#include <vector>  
#include <algorithm>  
#include <iostream>  
  
int main() {  
   using namespace std;  
   vector <int> v1, v2;  
   vector <int>::iterator Iter1, Iter2;  
  
   int i;  
   for ( i = 0 ; i <= 5 ; ++i )  
      v1.push_back( 10 * i );  
  
   int ii;  
   for ( ii = 0 ; ii <= 10 ; ++ii )  
      v2.push_back( 3 * ii );  
  
   cout << "v1 = ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; ++Iter1 )  
      cout << *Iter1 << " ";  
   cout << ")" << endl;  
  
   cout << "v2 = ( " ;  
   for ( Iter2 = v2.begin( ) ; Iter2 != v2.end( ) ; ++Iter2 )  
      cout << *Iter2 << " ";  
   cout << ")" << endl;  
  
   // To copy_backward the first 3 elements of v1 into the middle of v2  
   copy_backward( v1.begin( ), v1.begin( ) + 3, v2.begin( ) + 7 );  
  
   cout << "v2 with v1 insert = ( " ;  
   for ( Iter2 = v2.begin( ) ; Iter2 != v2.end( ) ; ++Iter2 )  
      cout << *Iter2 << " ";  
   cout << ")" << endl;  
  
   // To shift the elements inserted into v2 two positions  
   // to the right  
   copy_backward( v2.begin( )+4, v2.begin( ) + 7, v2.begin( ) + 9 );  
  
   cout << "v2 with shifted insert = ( " ;  
   for ( Iter2 = v2.begin( ) ; Iter2 != v2.end( ) ; ++Iter2 )  
      cout << *Iter2 << " ";  
   cout << ")" << endl;  
}  

copy_if

In a range of elements, copies the elements that are true for the specified condition.

template<class InputIterator, class OutputIterator, class BinaryPredicate>  
    OutputIterator copy_if(  
        InputIterator _First,   
        InputIterator _Last,  
        OutputIterator _Dest,  
        Predicate _Pred);  

Parameters

_First
An input iterator that indicates the start of a range to check for the condition.

_Last
An input iterator that indicates the end of the range.

_Dest
The output iterator that indicates the destination for the copied elements.

_Pred
The condition against which every element in the range is tested. This condition is provided by a user-defined predicate function object. A predicate takes one argument and returns true or false.

Return Value

An output iterator that equals _Dest incremented once for each element that fulfills the condition. In other words, the return value minus _Dest equals the number of copied elements.

Remarks

The template function evaluates

if (_Pred(*_First + N)) * _Dest++ = *(_First + N))

once for each N in the range [0, _Last - _First), for strictly increasing values of N starting with the lowest value. If _Dest and _First designate regions of storage, _Dest must not be in the range [``_First``, _Last``).

copy_n

Copies a specified number of elements.

template<class InputIterator, class Size, class OutputIterator>  
    OutputIterator copy_n(
        InputIterator first, 
        Size count, 
        OutputIterator dest);  

Parameters

first
An input iterator that indicates where to copy elements from.

count
A signed or unsigned integer type specifying the number of elements to copy.

dest
An output iterator that indicates where to copy elements to.

Return Value

Returns an output iterator where elements have been copied to. It is the same as the returned value of the third parameter, dest.

Remarks

The template function evaluates *(dest + N) = *(first + N)) once for each N in the range [0, count``), for strictly increasing values of N starting with the lowest value. It then returns dest + N. If dest and first designate regions of storage, dest must not be in the range [``first``, Last``).

count

Returns the number of elements in a range whose values match a specified value.

template<class InputIterator, class Type> 
    typename iterator_traits<InputIterator>::difference_type count(
        InputIterator _First, 
        InputIterator _Last, 
        const Type& _Val);  

Parameters

_First
An input iterator addressing the position of the first element in the range to be traversed.

_Last
An input iterator addressing the position one past the final element in the range to be traversed.

_Val
The value of the elements to be counted.

Return Value

The difference type of the InputIterator that counts the number of elements in the range [ _First, _Last ) that have value _Val.

Remarks

The operator== used to determine the match between an element and the specified value must impose an equivalence relation between its operands.

This algorithm is generalized to count elements that satisfy any predicate with the template function count_if.

Example

// alg_count.cpp  
// compile with: /EHsc  
#include <vector>  
#include <algorithm>  
#include <iostream>  
  
int main()  
{  
    using namespace std;  
    vector<int> v1;  
    vector<int>::iterator Iter;  
  
    v1.push_back(10);  
    v1.push_back(20);  
    v1.push_back(10);  
    v1.push_back(40);  
    v1.push_back(10);  
  
    cout << "v1 = ( " ;  
    for (Iter = v1.begin(); Iter != v1.end(); Iter++)  
        cout << *Iter << " ";  
    cout << ")" << endl;  
  
    vector<int>::iterator::difference_type result;  
    result = count(v1.begin(), v1.end(), 10);  
    cout << "The number of 10s in v2 is: " << result << "." << endl;  
}  
v1 = ( 10 20 10 40 10 )  
The number of 10s in v2 is: 3.  

count_if

Returns the number of elements in a range whose values satisfy a specified condition.

template<class InputIterator, class Predicate>
    typename iterator_traits<InputIterator>::difference_type count_if(
        InputIterator _First, 
        InputIterator _Last, 
        Predicate _Pred);  

Parameters

_First
An input iterator addressing the position of the first element in the range to be searched.

_Last
An input iterator addressing the position one past the final element in the range to be searched.

_Pred
User-defined predicate function object that defines the condition to be satisfied if an element is to be counted. A predicate takes single argument and returns true or false.

Return Value

The number of elements that satisfy the condition specified by the predicate.

Remarks

This template function is a generalization of the algorithm count, replacing the predicate "equals a specific value" with any predicate.

Example

// alg_count_if.cpp  
// compile with: /EHsc  
#include <vector>  
#include <algorithm>  
#include <iostream>  
  
bool greater10(int value)  
{  
    return value >10;  
}  
  
int main()  
{  
    using namespace std;  
    vector<int> v1;  
    vector<int>::iterator Iter;  
  
    v1.push_back(10);  
    v1.push_back(20);  
    v1.push_back(10);  
    v1.push_back(40);  
    v1.push_back(10);  
  
    cout << "v1 = ( ";  
    for (Iter = v1.begin(); Iter != v1.end(); Iter++)  
        cout << *Iter << " ";  
    cout << ")" << endl;  
  
    vector<int>::iterator::difference_type result1;  
    result1 = count_if(v1.begin(), v1.end(), greater10);  
    cout << "The number of elements in v1 greater than 10 is: "  
         << result1 << "." << endl;  
}  
v1 = ( 10 20 10 40 10 )  
The number of elements in v1 greater than 10 is: 2.  

equal

Compares two ranges element by element for equality or equivalence in a sense specified by a binary predicate.

Use std::equal when comparing elements in different container types (for example vector and list) or when comparing different element types, or when you need to compare sub-ranges of containers. Otherwise, when comparing elements of the same type in the same container type, use the non-member operator== that is provided for each container.

Use the dual-range overloads in C++14 code because the overloads that only take a single iterator for the second range will not detect differences if the second range is longer than the first range, and will result in undefined behavior if the second range is shorter than the first range.

template<class InputIterator1, class InputIterator2>  
bool equal(  
    InputIterator1  First1,  
    InputIterator1  Last1,  
    InputIterator2  First2);   
  
template<class InputIterator1, class InputIterator2, class BinaryPredicate>  
bool equal(  
    InputIterator1  First1,  
    InputIterator1  Last1,  
    InputIterator2  First2,  
    BinaryPredicate Comp); // C++14  
  
template<class InputIterator1, class InputIterator2>  
bool equal(  
    InputIterator1  First1,  
    InputIterator1  Last1,  
    InputIterator2  First2,  
    InputIterator2  Last2);  
  
template<class InputIterator1, class InputIterator2, class BinaryPredicate>  
bool equal(  
    InputIterator1  First1,  
    InputIterator1  Last1,  
    InputIterator2  First2,  
    InputIterator2  Last2,  
    BinaryPredicate Comp);  

Parameters

First1
An input iterator addressing the position of the first element in the first range to be tested.

Last1
An input iterator addressing the position one past the last element in the first range to be tested.

First2
An input iterator addressing the position of the first element in the second range to be tested.

First2
An input iterator addressing the position of one past the last element in the second range to be tested.

Comp
User-defined predicate function object that defines the condition to be satisfied if two elements are to be taken as equivalent. A binary predicate takes two arguments and returns true when satisfied and false when not satisfied.

Return Value

true if and only if the ranges are identical or equivalent under the binary predicate when compared element by element; otherwise, false.

Remarks

The range to be searched must be valid; all iterators must be dereferenceable and the last position is reachable from the first by incrementation.

If the two ranges are equal length, then the time complexity of the algorithm is linear in the number of elements contained in the range. Otherwise the function immediately returns false.

Neither the operator== nor the user-defined predicate is required to impose an equivalence relation that symmetric, reflexive and transitive between its operands.

Example

#include <iostream>  
#include <vector>  
#include <algorithm>  
  
using namespace std;  
  
int main()  
{  
    vector<int> v1 { 0, 5, 10, 15, 20, 25 };  
    vector<int> v2 { 0, 5, 10, 15, 20, 25 };  
    vector<int> v3 { 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 };  
  
    // Using range-and-a-half equal:  
    bool b = equal(v1.begin(), v1.end(), v2.begin());  
    cout << "v1 and v2 are equal: "  
       << b << endl; // true, as expected  
  
    b = equal(v1.begin(), v1.end(), v3.begin());  
    cout << "v1 and v3 are equal: "  
       << b << endl; // true, surprisingly  
  
    // Using dual-range equal:  
    b = equal(v1.begin(), v1.end(), v3.begin(), v3.end());  
    cout << "v1 and v3 are equal with dual-range overload: "  
       << b << endl; // false  
  
    return 0;  
}  
  

equal_range

Given an ordered range, finds the subrange in which all elements are equivalent to a given value.

template<class ForwardIterator, class Type>  
pair<ForwardIterator, ForwardIterator> equal_range(  
    ForwardIterator first,  
    ForwardIterator last,   
    const Type& val);

template<class ForwardIterator, class Type, class Predicate>  
pair<ForwardIterator, ForwardIterator> equal_range(  
    ForwardIterator first,  
    ForwardIterator last,   
    const Type& val,   
    Predicate comp);  

Parameters

first
A forward iterator addressing the position of the first element in the range to be searched.

last
A forward iterator addressing the position one past the final element in the range to be searched.

val
The value being searched for in the ordered range.

comp
User-defined predicate function object that defines the sense in which one element is less than another.

Return Value

A pair of forward iterators that specify a subrange, contained within the range searched, in which all of the elements are equivalent to val in the sense defined by the binary predicate used (either comp or the default, less-than).

If no elements in the range are equivalent to val, the returned pair of forward iterators are equal and specify the point where val could be inserted without disturbing the order of the range.

Remarks

The first iterator of the pair returned by the algorithm is lower_bound, and the second iterator is upper_bound.

The range must be sorted according to the predicate provided to equal_range. For example, if you are going to use the greater-than predicate, the range must be sorted in descending order.

Elements in the possibly empty subrange defined by the pair of iterators returned by equal_range will be equivalent to val in the sense defined by the predicate used.

The complexity of the algorithm is logarithmic for random-access iterators and linear otherwise, with the number of steps proportional to ( lastfirst).

Example

// alg_equal_range.cpp  
// compile with: /EHsc  
#include <vector>  
#include <algorithm>  
#include <functional>      // greater<int>()  
#include <iostream>  
#include <string>  
using namespace std;  
  
template<class T> void dump_vector( const vector<T>& v, pair< typename vector<T>::iterator, typename vector<T>::iterator > range )  
{  
    // prints vector v with range delimited by [ and ]  
  
    for( typename vector<T>::const_iterator i = v.begin(); i != v.end(); ++i )  
    {  
        if( i == range.first )  
        {  
            cout << "[ ";  
        }  
        if( i == range.second )  
        {  
            cout << "] ";  
        }  
  
        cout << *i << " ";  
    }  
    cout << endl;  
}  
  
template<class T> void equal_range_demo( const vector<T>& original_vector, T val )  
{  
    vector<T> v(original_vector);  
  
    sort( v.begin(), v.end() );  
    cout << "Vector sorted by the default binary predicate <:" << endl << '\t';  
    for( vector<T>::const_iterator i = v.begin(); i != v.end(); ++i )  
    {  
        cout << *i << " ";  
    }  
    cout << endl << endl;  
  
    pair< vector<T>::iterator, vector<T>::iterator > result  
        = equal_range( v.begin(), v.end(), val );  
  
    cout << "Result of equal_range with val = " << val << ":" << endl << '\t';  
    dump_vector( v, result );  
    cout << endl;  
}  
  
template<class T, class F> void equal_range_demo( const vector<T>& original_vector, T val, F pred, string predname )  
{  
    vector<T> v(original_vector);  
  
    sort( v.begin(), v.end(), pred );  
    cout << "Vector sorted by the binary predicate " << predname << ":" << endl << '\t';  
    for( typename vector<T>::const_iterator i = v.begin(); i != v.end(); ++i )  
    {  
        cout << *i << " ";  
    }  
    cout << endl << endl;  
  
    pair< typename vector<T>::iterator, typename vector<T>::iterator > result  
        = equal_range( v.begin(), v.end(), val, pred );  
  
    cout << "Result of equal_range with val = " << val << ":" << endl << '\t';  
    dump_vector( v, result );  
    cout << endl;  
}  
  
// Return whether absolute value of elem1 is less than absolute value of elem2  
bool abs_lesser( int elem1, int elem2 )  
{  
    return abs(elem1) < abs(elem2);  
}  
  
// Return whether string l is shorter than string r  
bool shorter_than(const string& l, const string& r)  
{  
    return l.size() < r.size();  
}  
  
int main()  
{  
    vector<int> v1;  
  
    // Constructing vector v1 with default less than ordering  
    for( int i = -1; i <= 4; ++i )  
    {  
        v1.push_back(i);  
    }  
  
    for( int i =-3; i <= 0; ++i )  
    {  
        v1.push_back( i );  
    }  
  
    equal_range_demo( v1, 3 );  
    equal_range_demo( v1, 3, greater<int>(), "greater" );  
    equal_range_demo( v1, 3, abs_lesser, "abs_lesser" );  
  
    vector<string> v2;  
  
    v2.push_back("cute");  
    v2.push_back("fluffy");  
    v2.push_back("kittens");  
    v2.push_back("fun");  
    v2.push_back("meowmeowmeow");  
    v2.push_back("blah");  
  
    equal_range_demo<string>( v2, "fred" );  
    equal_range_demo<string>( v2, "fred", shorter_than, "shorter_than" );  
}  
  

fill

Assigns the same new value to every element in a specified range.

template<class ForwardIterator, class Type>  
void fill(
    ForwardIterator _First, 
    ForwardIterator _Last, 
    const Type& _Val);  

Parameters

_First
A forward iterator addressing the position of the first element in the range to be traversed.

_Last
A forward iterator addressing the position one past the final element in the range to be traversed.

_Val
The value to be assigned to elements in the range [ _First, _Last).

Remarks

The destination range must be valid; all pointers must be dereferenceable, and the last position is reachable from the first by incrementation. The complexity is linear with the size of the range.

Example

// alg_fill.cpp  
// compile with: /EHsc  
#include <vector>  
#include <algorithm>  
#include <iostream>  
  
int main( )   
{  
   using namespace std;  
   vector <int> v1;  
   vector <int>::iterator Iter1;  
  
   int i;  
   for ( i = 0 ; i <= 9 ; i++ )  
   {  
      v1.push_back( 5 * i );  
   }  
  
   cout << "Vector v1 = ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")" << endl;  
  
   // Fill the last 5 positions with a value of 2  
   fill( v1.begin( ) + 5, v1.end( ), 2 );  
  
   cout << "Modified v1 = ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")" << endl;  
}  
Vector v1 = ( 0 5 10 15 20 25 30 35 40 45 )  
Modified v1 = ( 0 5 10 15 20 2 2 2 2 2 )  

fill_n

Assigns a new value to a specified number of elements in a range beginning with a particular element.

template<class OutputIterator, class Size, class Type>  
OutputIterator fill_n(
    OutputIterator First, 
    Size Count, 
    const Type& Val);   

Parameters

First
An output iterator addressing the position of the first element in the range to be assigned the value Val.

Count
A signed or unsigned integer type specifying the number of elements to be assigned the value.

Val
The value to be assigned to elements in the range [ First, First + Count).

Return Value

An iterator to the element that follows the last element filled if Count > zero, otherwise the first element.

Remarks

The destination range must be valid; all pointers must be dereferenceable, and the last position is reachable from the first by incrementation. The complexity is linear with the size of the range.

Example

// alg_fill_n.cpp  
// compile using /EHsc  
#include <vector>  
#include <algorithm>  
#include <iostream>  
  
int main()   
{  
    using namespace std;  
    vector <int> v;  
  
    for ( auto i = 0 ; i < 9 ; ++i )  
        v.push_back( 0 );  
  
    cout << "  vector v = ( " ;  
    for ( const auto &w : v )  
        cout << w << " ";  
    cout << ")" << endl;  
  
    // Fill the first 3 positions with a value of 1, saving position.  
    auto pos = fill_n( v.begin(), 3, 1 );  
  
    cout << "modified v = ( " ;  
    for ( const auto &w : v )  
        cout << w << " ";  
    cout << ")" << endl;  
  
    // Fill the next 3 positions with a value of 2, using last position.  
    fill_n( pos, 3, 2 );  
  
    cout << "modified v = ( " ;  
    for ( const auto &w : v )  
        cout << w << " ";  
    cout << ")" << endl;  
  
    // Fill the last 3 positions with a value of 3, using relative math.  
    fill_n( v.end()-3, 3, 3 );  
  
    cout << "modified v = ( " ;  
    for ( const auto &w : v )  
        cout << w << " ";  
    cout << ")" << endl;  
}  
  

find

Locates the position of the first occurrence of an element in a range that has a specified value.

template<class InputIterator, class T>  
InputIterator find(
    InputIterator first, 
    InputIterator last,   
    const T& val);  

Parameters

first
An input iterator addressing the position of the first element in the range to be searched for the specified value.

last
An input iterator addressing the position one past the final element in the range to be searched for the specified value.

val
The value to be searched for.

Return Value

An input iterator addressing the first occurrence of the specified value in the range being searched. If no element is found with an equivalent value, returns last.

Remarks

The operator== used to determine the match between an element and the specified value must impose an equivalence relation between its operands.

For a code example using find(), see find_if.

find_end

Looks in a range for the last subsequence that is identical to a specified sequence or that is equivalent in a sense specified by a binary predicate.

template<class ForwardIterator1, class ForwardIterator2>  
ForwardIterator1 find_end(  
    ForwardIterator1 First1,   
    ForwardIterator1 Last1,  
    ForwardIterator2 First2,   
    ForwardIterator2 Last2);  

template<class ForwardIterator1, class ForwardIterator2, class Pred>  
ForwardIterator1 find_end(  
    ForwardIterator1 First1,   
    ForwardIterator1 Last1,  
    ForwardIterator2 First2,   
    ForwardIterator2 Last2,  
    Pred Comp);  

Parameters

First1
A forward iterator addressing the position of the first element in the range to be searched.

Last1
A forward iterator addressing the position one past the last element in the range to be searched.

First2
A forward iterator addressing the position of the first element in the range to search for.

Last2
A forward iterator addressing the position one past the last element in the range to search for.

Comp
User-defined predicate function object that defines the condition to be satisfied if two elements are to be taken as equivalent. A binary predicate takes two arguments and returns true when satisfied and false when not satisfied.

Return Value

A forward iterator addressing the position of the first element of the last subsequence within [First1, Last1) that matches the specified sequence [First2, Last2).

Remarks

The operator== used to determine the match between an element and the specified value must impose an equivalence relation between its operands.

The ranges referenced must be valid; all pointers must be dereferenceable and, within each sequence, the last position is reachable from the first by incrementation.

Example

// alg_find_end.cpp  
// compile with: /EHsc  
#include <vector>  
#include <list>  
#include <algorithm>  
#include <iostream>  
  
// Return whether second element is twice the first  
bool twice ( int elem1, int elem2 )  
{  
   return 2 * elem1 == elem2;  
}  
  
int main( )  
{  
   using namespace std;  
   vector <int> v1, v2;  
   list <int> L1;  
   vector <int>::iterator Iter1, Iter2;  
   list <int>::iterator L1_Iter, L1_inIter;  
  
   int i;  
   for ( i = 0 ; i <= 5 ; i++ )  
   {  
      v1.push_back( 5 * i );  
   }  
   for ( i = 0 ; i <= 5 ; i++ )  
   {  
      v1.push_back( 5 * i );  
   }  
  
   int ii;  
   for ( ii = 1 ; ii <= 4 ; ii++ )  
   {  
      L1.push_back( 5 * ii );  
   }  
  
   int iii;  
   for ( iii = 2 ; iii <= 4 ; iii++ )  
   {  
      v2.push_back( 10 * iii );  
   }  
  
   cout << "Vector v1 = ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")" << endl;  
  
   cout << "List L1 = ( " ;  
   for ( L1_Iter = L1.begin( ) ; L1_Iter!= L1.end( ) ; L1_Iter++ )  
      cout << *L1_Iter << " ";  
   cout << ")" << endl;  
  
   cout << "Vector v2 = ( " ;  
   for ( Iter2 = v2.begin( ) ; Iter2 != v2.end( ) ; Iter2++ )  
      cout << *Iter2 << " ";  
      cout << ")" << endl;  
  
   // Searching v1 for a match to L1 under identity  
   vector <int>::iterator result1;  
   result1 = find_end ( v1.begin( ), v1.end( ), L1.begin( ), L1.end( ) );  
  
   if ( result1 == v1.end( ) )  
      cout << "There is no match of L1 in v1."  
           << endl;  
   else  
      cout << "There is a match of L1 in v1 that begins at "  
           << "position "<< result1 - v1.begin( ) << "." << endl;  
  
   // Searching v1 for a match to L1 under the binary predicate twice  
   vector <int>::iterator result2;  
   result2 = find_end ( v1.begin( ), v1.end( ), v2.begin( ), v2.end( ), twice );  
  
   if ( result2 == v1.end( ) )  
      cout << "There is no match of L1 in v1."  
           << endl;  
   else  
      cout << "There is a sequence of elements in v1 that "  
           << "are equivalent to those\n in v2 under the binary "  
           << "predicate twice and that begins at position "  
           << result2 - v1.begin( ) << "." << endl;  
}  
Vector v1 = ( 0 5 10 15 20 25 0 5 10 15 20 25 )  
List L1 = ( 5 10 15 20 )  
Vector v2 = ( 20 30 40 )  
There is a match of L1 in v1 that begins at position 7.  
There is a sequence of elements in v1 that are equivalent to those  
 in v2 under the binary predicate twice and that begins at position 8.  

find_first_of

Searches for the first occurrence of any of several values within a target range or for the first occurrence of any of several elements that are equivalent in a sense specified by a binary predicate to a specified set of the elements.

template<class ForwardIterator1, class ForwardIterator2>  
ForwardIterator1 find_first_of(    
    ForwardIterator1  _First1,  
    ForwardIterator1 Last1,  
    ForwardIterator2  _First2,  
    ForwardIterator2 Last2);  
  
template<class ForwardIterator1, class ForwardIterator2, class BinaryPredicate>  
ForwardIterator1 find_first_of(  
    ForwardIterator1  _First1,  
    ForwardIterator1 Last1,  
    ForwardIterator2  _First2,  
    ForwardIterator2 Last2,  
    BinaryPredicate  _Comp);  

Parameters

_First1
A forward iterator addressing the position of the first element in the range to be searched.

_Last1
A forward iterator addressing the position one past the final element in the range to be searched.

_First2
A forward iterator addressing the position of the first element in the range to be matched.

_Last2
A forward iterator addressing the position one past the final element in the range to be matched.

_Comp
User-defined predicate function object that defines the condition to be satisfied if two elements are to be taken as equivalent. A binary predicate takes two arguments and returns true when satisfied and false when not satisfied.

Return Value

A forward iterator addressing the position of the first element of the first subsequence that matches the specified sequence or that is equivalent in a sense specified by a binary predicate.

Remarks

The operator== used to determine the match between an element and the specified value must impose an equivalence relation between its operands.

The ranges referenced must be valid; all pointers must be dereferenceable and, within each sequence, the last position is reachable from the first by incrementation.

Example

// alg_find_first_of.cpp  
// compile with: /EHsc  
#include <vector>  
#include <list>  
#include <algorithm>  
#include <iostream>  
  
// Return whether second element is twice the first  
bool twice ( int elem1, int elem2 )  
{  
   return 2 * elem1 == elem2;  
}  
  
int main( )  
{  
   using namespace std;  
   vector <int> v1, v2;  
   list <int> L1;  
   vector <int>::iterator Iter1, Iter2;  
   list <int>::iterator L1_Iter, L1_inIter;  
  
   int i;  
   for ( i = 0 ; i <= 5 ; i++ )  
   {  
      v1.push_back( 5 * i );  
   }  
   for ( i = 0 ; i <= 5 ; i++ )  
   {  
      v1.push_back( 5 * i );  
   }  
  
   int ii;  
   for ( ii = 3 ; ii <= 4 ; ii++ )  
   {  
      L1.push_back( 5 * ii );  
   }  
  
   int iii;  
   for ( iii = 2 ; iii <= 4 ; iii++ )  
   {  
      v2.push_back( 10 * iii );  
   }  
  
   cout << "Vector v1 = ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")" << endl;  
  
   cout << "List L1 = ( " ;  
   for ( L1_Iter = L1.begin( ) ; L1_Iter!= L1.end( ) ; L1_Iter++ )  
      cout << *L1_Iter << " ";  
   cout << ")" << endl;  
  
   cout << "Vector v2 = ( " ;  
   for ( Iter2 = v2.begin( ) ; Iter2 != v2.end( ) ; Iter2++ )  
      cout << *Iter2 << " ";  
      cout << ")" << endl;  
  
   // Searching v1 for first match to L1 under identity  
   vector <int>::iterator result1;  
   result1 = find_first_of ( v1.begin( ), v1.end( ), L1.begin( ), L1.end( ) );  
  
   if ( result1 == v1.end( ) )  
      cout << "There is no match of L1 in v1."  
           << endl;  
   else  
      cout << "There is at least one match of L1 in v1"  
           << "\n and the first one begins at "  
           << "position "<< result1 - v1.begin( ) << "." << endl;  
  
   // Searching v1 for a match to L1 under the binary predicate twice  
   vector <int>::iterator result2;  
   result2 = find_first_of ( v1.begin( ), v1.end( ), v2.begin( ), v2.end( ), twice );  
  
   if ( result2 == v1.end( ) )  
      cout << "There is no match of L1 in v1."  
           << endl;  
   else  
      cout << "There is a sequence of elements in v1 that "  
           << "are equivalent\n to those in v2 under the binary "  
           << "predicate twice\n and the first one begins at position "  
           << result2 - v1.begin( ) << "." << endl;  
}  
Vector v1 = ( 0 5 10 15 20 25 0 5 10 15 20 25 )  
List L1 = ( 15 20 )  
Vector v2 = ( 20 30 40 )  
There is at least one match of L1 in v1  
 and the first one begins at position 3.  
There is a sequence of elements in v1 that are equivalent  
 to those in v2 under the binary predicate twice  
 and the first one begins at position 2.  

find_if

Locates the position of the first occurrence of an element in a range that satisfies a specified condition.

template<class InputIterator, class Predicate>  
InputIterator find_if(
    InputIterator first, 
    InputIterator last, 
    Predicate pred);  

Parameters

first
An input iterator addressing the position of the first element in the range to be searched.

last
An input iterator addressing the position one past the final element in the range to be searched.

pred
User-defined predicate function object or lambda expression that defines the condition to be satisfied by the element being searched for. A predicate takes single argument and returns true (satisfied) or false (not satisfied). The signature of pred must effectively be bool pred(const T& arg);, where T is a type to which InputIterator can be implicitly converted when dereferenced. The const keyword is shown only to illustrate that the function object or lambda should not modify the argument.

Return Value

An input iterator that refers to the first element in the range that satisfies the condition specified by the predicate (the predicate results in true). If no element is found to satisfy the predicate, returns last.

Remarks

This template function is a generalization of the algorithm find, replacing the predicate "equals a specific value" with any predicate. For the logical opposite (find the first element that does not satisfy the predicate), see find_if_not.

Example

// cl.exe /W4 /nologo /EHsc /MTd  
#include <vector>  
#include <algorithm>  
#include <iostream>  
#include <string>  
  
using namespace std;  
  
template <typename S> void print(const S& s) {  
    for (const auto& p : s) {  
        cout << "(" << p << ") ";  
    }  
    cout << endl;  
}  
  
// Test std::find()  
template <class InputIterator, class T>  
void find_print_result(InputIterator first, InputIterator last, const T& value) {  
  
    // call <algorithm> std::find()  
    auto p = find(first, last, value);  
  
    cout << "value " << value;  
    if (p == last) {  
        cout << " not found." << endl;  
    } else {  
        cout << " found." << endl;  
    }  
}  
  
// Test std::find_if()  
template <class InputIterator, class Predicate>  
void find_if_print_result(InputIterator first, InputIterator last,  
    Predicate Pred, const string& Str) {  
  
    // call <algorithm> std::find_if()  
    auto p = find_if(first, last, Pred);  
  
    if (p == last) {  
        cout << Str << " not found." << endl;  
    } else {  
        cout << "first " << Str << " found: " << *p << endl;  
    }  
}  
  
// Function to use as the UnaryPredicate argument to find_if() in this example  
bool is_odd_int(int i) {  
    return ((i % 2) != 0);  
}  
  
int main()  
{  
    // Test using a plain old array.  
    const int x[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };  
    cout << "array x[] contents: ";  
    print(x);  
    // Using non-member std::begin()/std::end() to get input iterators for the plain old array.  
    cout << "Test std::find() with array..." << endl;  
    find_print_result(begin(x), end(x), 10);  
    find_print_result(begin(x), end(x), 42);  
    cout << "Test std::find_if() with array..." << endl;  
    find_if_print_result(begin(x), end(x), is_odd_int, "odd integer"); // function name  
    find_if_print_result(begin(x), end(x), // lambda  
        [](int i){ return ((i % 2) == 0); }, "even integer");  
  
    // Test using a vector.  
    vector<int> v;  
    for (int i = 0; i < 10; ++i) {  
        v.push_back((i + 1) * 10);  
    }  
    cout << endl << "vector v contents: ";  
    print(v);  
    cout << "Test std::find() with vector..." << endl;  
    find_print_result(v.begin(), v.end(), 20);  
    find_print_result(v.begin(), v.end(), 12);  
    cout << "Test std::find_if() with vector..." << endl;  
    find_if_print_result(v.begin(), v.end(), is_odd_int, "odd integer");  
    find_if_print_result(v.begin(), v.end(), // lambda  
        [](int i){ return ((i % 2) == 0); }, "even integer");  
}  
  

find_if_not

Returns the first element in the indicated range that does not satisfy a condition.

template<class InputIterator, class Predicate>  
InputIterator find_if_not(
    InputIterator first, 
    InputIterator last,   
    Predicate pred);  

Parameters

first
An input iterator addressing the position of the first element in the range to be searched.

last
An input iterator addressing the position one past the final element in the range to be searched.

pred
User-defined predicate function object or lambda expression that defines the condition to be not satisfied by the element being searched for. A predicate takes single argument and returns true (satisfied) or false (not satisfied). The signature of pred must effectively be bool pred(const T& arg);, where T is a type to which InputIterator can be implicitly converted when dereferenced. The const keyword is shown only to illustrate that the function object or lambda should not modify the argument.

Return Value

An input iterator that refers to the first element in the range that does not satisfy the condition specified by the predicate (the predicate results in false). If all elements satisfy the predicate (the predicate results in true for every element), returns last.

Remarks

This template function is a generalization of the algorithm find, replacing the predicate "equals a specific value" with any predicate. For the logical opposite (find the first element that does satisfy the predicate), see find_if.

For a code example readily adaptable to find_if_not(), see find_if.

for_each

Applies a specified function object to each element in a forward order within a range and returns the function object.

template<class InputIterator, class Function>  
Function for_each(
    InputIterator _First, 
    InputIterator _Last, 
    Function _Func);  

Parameters

_First
An input iterator addressing the position of the first element in the range to be operated on.

_Last
An input iterator addressing the position one past the final element in the range operated on.

_Func
User-defined function object that is applied to each element in the range.

Return Value

A copy of the function object after it has been applied to all of the elements in the range.

Remarks

The algorithm for_each is very flexible, allowing the modification of each element within a range in different, user-specified ways. Templatized functions may be reused in a modified form by passing different parameters. User-defined functions may accumulate information within an internal state that the algorithm may return after processing all of the elements in the range.

The range referenced must be valid; all pointers must be dereferenceable and, within the sequence, the last position must be reachable from the first by incrementation.

The complexity is linear with at most ( _Last_First) comparisons.

Example

// alg_for_each.cpp  
// compile with: /EHsc  
#include <vector>  
#include <algorithm>  
#include <iostream>  
  
// The function object multiplies an element by a Factor  
template <class Type>  
class MultValue  
{  
private:  
   Type Factor;   // The value to multiply by  
public:  
   // Constructor initializes the value to multiply by  
   MultValue ( const Type& _Val ) : Factor ( _Val ) {  
   }  
  
   // The function call for the element to be multiplied  
   void operator ( ) ( Type& elem ) const  
   {  
      elem *= Factor;  
   }  
};  
  
// The function object to determine the average  
class Average  
{  
private:  
   long num;      // The number of elements  
   long sum;      // The sum of the elements  
public:  
   // Constructor initializes the value to multiply by  
   Average ( ) : num ( 0 ) , sum ( 0 )  
   {  
   }  
  
   // The function call to process the next elment  
   void operator ( ) ( int elem ) \  
   {  
      num++;      // Increment the element count  
      sum += elem;   // Add the value to the partial sum  
   }  
  
   // return Average  
   operator double ( )  
   {  
      return  static_cast <double> (sum) /  
      static_cast <double> (num);  
   }  
};  
  
int main( )  
{  
   using namespace std;  
   vector <int> v1;  
   vector <int>::iterator Iter1;  
  
   // Constructing vector v1  
   int i;  
   for ( i = -4 ; i <= 2 ; i++ )  
   {  
      v1.push_back(  i );  
   }  
  
   cout << "Original vector  v1 = ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
  
   // Using for_each to multiply each element by a Factor  
   for_each ( v1.begin ( ) , v1.end ( ) , MultValue<int> ( -2 ) );  
  
   cout << "Multiplying the elements of the vector v1\n "  
        <<  "by the factor -2 gives:\n v1mod1 = ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
  
   // The function object is templatized and so can be  
   // used again on the elements with a different Factor  
   for_each (v1.begin ( ) , v1.end ( ) , MultValue<int> (5 ) );  
  
   cout << "Multiplying the elements of the vector v1mod\n "  
        <<  "by the factor 5 gives:\n v1mod2 = ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
  
   // The local state of a function object can accumulate  
   // information about a sequence of actions that the  
   // return value can make available, here the Average  
   double avemod2 = for_each ( v1.begin ( ) , v1.end ( ) ,  
      Average ( ) );  
   cout << "The average of the elements of v1 is:\n Average ( v1mod2 ) = "  
        << avemod2 << "." << endl;  
}  
Original vector  v1 = ( -4 -3 -2 -1 0 1 2 ).  
Multiplying the elements of the vector v1  
 by the factor -2 gives:  
 v1mod1 = ( 8 6 4 2 0 -2 -4 ).  
Multiplying the elements of the vector v1mod  
 by the factor 5 gives:  
 v1mod2 = ( 40 30 20 10 0 -10 -20 ).  
The average of the elements of v1 is:  
 Average ( v1mod2 ) = 10.  

generate

Assigns the values generated by a function object to each element in a range.

template<class ForwardIterator, class Generator>  
void generate(
    ForwardIterator _First, 
    ForwardIteratorLast, 
    Generator _Gen);  

Parameters

_First
A forward iterator addressing the position of the first element in the range to which values are to be assigned.

_Last
A forward iterator addressing the position one past the final element in the range to which values are to be assigned.

_Gen
A function object that is called with no arguments that is used to generate the values to be assigned to each of the elements in the range.

Remarks

The function object is invoked for each element in the range and does not need to return the same value each time it is called. It may, for example, read from a file or refer to and modify a local state. The generator's result type must be convertible to the value type of the forward iterators for the range.

The range referenced must be valid; all pointers must be dereferenceable and, within the sequence, the last position must be reachable from the first by incrementation.

The complexity is linear, with exactly ( _Last_First) calls to the generator being required.

Example

// alg_generate.cpp  
// compile with: /EHsc  
#include <vector>  
#include <deque>  
#include <algorithm>  
#include <iostream>  
#include <ostream>  
  
int main( )  
{  
   using namespace std;  
  
   // Assigning random values to vector integer elements  
   vector <int> v1 ( 5 );  
   vector <int>::iterator Iter1;  
   deque <int> deq1 ( 5 );  
   deque <int>::iterator d1_Iter;  
  
   generate ( v1.begin ( ), v1.end ( ) , rand );  
  
   cout << "Vector v1 is ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
  
   // Assigning random values to deque integer elements  
   generate ( deq1.begin ( ), deq1.end ( ) , rand );  
  
   cout << "Deque deq1 is ( " ;  
   for ( d1_Iter = deq1.begin( ) ; d1_Iter != deq1.end( ) ; d1_Iter++ )  
      cout << *d1_Iter << " ";  
   cout << ")." << endl;  
}  
Vector v1 is ( 41 18467 6334 26500 19169 ).  
Deque deq1 is ( 15724 11478 29358 26962 24464 ).  

generate_n

Assigns the values generated by a function object to a specified number of elements in a range and returns to the position one past the last assigned value.

template<class OutputIterator, class Diff, class Generator>  
void generate_n( 
    OutputIterator First, 
    Diff Count, 
    Generator Gen);  

Parameters

First
An output iterator addressing the position of first element in the range to which values are to be assigned.

Count
A signed or unsigned integer type specifying the number of elements to be assigned a value by the generator function.

Gen
A function object that is called with no arguments that is used to generate the values to be assigned to each of the elements in the range.

Remarks

The function object is invoked for each element in the range and does not need to return the same value each time it is called. It may, for example, read from a file or refer to and modify a local state. The generator's result type must be convertible to the value type of the forward iterators for the range.

The range referenced must be valid; all pointers must be dereferenceable and, within the sequence, the last position must be reachable from the first by incrementation.

The complexity is linear, with exactly Count calls to the generator being required.

Example

// cl.exe /EHsc /nologo /W4 /MTd  
#include <vector>  
#include <deque>  
#include <iostream>  
#include <string>  
#include <algorithm>  
#include <random>  
  
using namespace std;  
  
template <typename C> void print(const string& s, const C& c) {  
    cout << s;  
  
    for (const auto& e : c) {  
        cout << e << " ";  
    }  
  
    cout << endl;  
}  
  
int main()  
{  
    const int elemcount = 5;  
    vector<int> v(elemcount);  
    deque<int> dq(elemcount);  
  
    // Set up random number distribution  
    random_device rd;  
    mt19937 engine(rd());  
    uniform_int_distribution<int> dist(-9, 9);  
  
    // Call generate_n, using a lambda for the third parameter  
    generate_n(v.begin(), elemcount, [&](){ return dist(engine); });  
    print("vector v is: ", v);  
  
    generate_n(dq.begin(), elemcount, [&](){ return dist(engine); });  
    print("deque dq is: ", dq);  
}  
  

includes

Tests whether one sorted range contains all the elements contained in a second sorted range, where the ordering or equivalence criterion between elements may be specified by a binary predicate.

template<class InputIterator1, class InputIterator2>  
bool includes(  
    InputIterator1 _First1,  
    InputIterator1 _Last1,  
    InputIterator2 _First2,  
    InputIterator2 _Last2);  
  
template<class InputIterator1, class InputIterator2, class BinaryPredicate>  
bool includes(  
    InputIterator1 _First1,  
    InputIterator1 _Last1,  
    InputIterator2 _First2,  
    InputIterator2 _Last2,  
    BinaryPredicate _Comp );  

Parameters

_First1
An input iterator addressing the position of the first element in the first of two sorted source ranges to be tested for whether all the elements of the second are contained in the first.

_Last1
An input iterator addressing the position one past the last element in the first of two sorted source ranges to be tested for whether all the elements of the second are contained in the first.

_First2
An input iterator addressing the position of the first element in second of two consecutive sorted source ranges to be tested for whether all the elements of the second are contained in the first.

_Last2
An input iterator addressing the position one past the last element in second of two consecutive sorted source ranges to be tested for whether all the elements of the second are contained in the first.

_Comp
User-defined predicate function object that defines sense in which one element is less than another. A binary predicate takes two arguments and returns true when satisfied and false when not satisfied.

Return Value

true if the first sorted range contains all the elements in the second sorted range; otherwise, false.

Remarks

Another way to think of this test is that it determined whether the second source range is a subset of the first source range.

The sorted source ranges referenced must be valid; all pointers must be dereferenceable and, within each sequence, the last position must be reachable from the first by incrementation.

The sorted source ranges must each be arranged as a precondition to the application of the algorithm includes in accordance with the same ordering as is to be used by the algorithm to sort the combined ranges.

The source ranges are not modified by the algorithm merge.

The value types of the input iterators need be less-than comparable to be ordered, so that, given two elements, it may be determined either that they are equivalent (in the sense that neither is less than the other) or that one is less than the other. This results in an ordering between the nonequivalent elements. More precisely, the algorithm tests whether all the elements in the first sorted range under a specified binary predicate have equivalent ordering to those in the second sorted range.

The complexity of the algorithm is linear with at most 2 * ( ( _Last1 – _First1) – ( _Last2 – _First2) ) – 1 comparisons for nonempty source ranges.

Example

// alg_includes.cpp  
// compile with: /EHsc  
#include <vector>  
#include <algorithm>  
#include <functional>      // For greater<int>( )  
#include <iostream>  
  
// Return whether modulus of elem1 is less than modulus of elem2  
bool mod_lesser (int elem1, int elem2 )  
{  
   if ( elem1 < 0 )   
      elem1 = - elem1;  
   if ( elem2 < 0 )   
      elem2 = - elem2;  
   return elem1 < elem2;  
}  
  
int main( )  
{  
   using namespace std;  
   vector <int> v1a, v1b;  
   vector <int>::iterator Iter1a,  Iter1b;  
  
   // Constructing vectors v1a & v1b with default less-than ordering  
   int i;  
   for ( i = -2 ; i <= 4 ; i++ )  
   {  
      v1a.push_back(  i );  
   }  
  
   int ii;  
   for ( ii =-2 ; ii <= 3 ; ii++ )  
   {  
      v1b.push_back(  ii  );  
   }  
  
   cout << "Original vector v1a with range sorted by the\n "  
        << "binary predicate less than is v1a = ( " ;  
   for ( Iter1a = v1a.begin( ) ; Iter1a != v1a.end( ) ; Iter1a++ )  
      cout << *Iter1a << " ";  
   cout << ")." << endl;  
  
   cout << "Original vector v1b with range sorted by the\n "  
        <<  "binary predicate less than is v1b = ( " ;  
   for ( Iter1b = v1b.begin ( ) ; Iter1b != v1b.end ( ) ; Iter1b++ )  
      cout << *Iter1b << " ";  
   cout << ")." << endl;  
  
   // Constructing vectors v2a & v2b with ranges sorted by greater  
   vector <int> v2a ( v1a ) , v2b ( v1b );  
   vector <int>::iterator Iter2a,  Iter2b;  
   sort ( v2a.begin ( ) , v2a.end ( ) , greater<int> ( ) );  
   sort ( v2b.begin ( ) , v2b.end ( ) , greater<int> ( ) );  
   v2a.pop_back ( );  
  
   cout << "Original vector v2a with range sorted by the\n "  
        <<  "binary predicate greater is v2a = ( " ;  
   for ( Iter2a = v2a.begin ( ) ; Iter2a != v2a.end ( ) ; Iter2a++ )  
      cout << *Iter2a << " ";  
   cout << ")." << endl;  
  
   cout << "Original vector v2b with range sorted by the\n "  
        <<  "binary predicate greater is v2b = ( " ;  
   for ( Iter2b = v2b.begin ( ) ; Iter2b != v2b.end ( ) ; Iter2b++ )  
      cout << *Iter2b << " ";  
   cout << ")." << endl;  
  
   // Constructing vectors v3a & v3b with ranges sorted by mod_lesser  
   vector <int> v3a ( v1a ), v3b ( v1b ) ;  
   vector <int>::iterator Iter3a, Iter3b;  
   reverse (v3a.begin( ), v3a.end( ) );  
   v3a.pop_back ( );  
   v3a.pop_back ( );  
   sort ( v3a.begin ( ) , v3a.end ( ) , mod_lesser );  
   sort ( v3b.begin ( ) , v3b.end ( ) , mod_lesser );  
  
   cout << "Original vector v3a with range sorted by the\n "  
        <<  "binary predicate mod_lesser is v3a = ( " ;  
   for ( Iter3a = v3a.begin ( ) ; Iter3a != v3a.end ( ) ; Iter3a++ )  
      cout << *Iter3a << " ";  
   cout << ")." << endl;  
  
   cout << "Original vector v3b with range sorted by the\n "  
        <<  "binary predicate mod_lesser is v3b = ( " ;  
   for ( Iter3b = v3b.begin ( ) ; Iter3b != v3b.end ( ) ; Iter3b++ )  
      cout << *Iter3b << " ";  
   cout << ")." << endl;  
  
   // To test for inclusion under an asscending order  
   // with the default binary predicate less <int> ( )  
   bool Result1;  
   Result1 = includes ( v1a.begin ( ) , v1a.end ( ) ,  
      v1b.begin ( ) , v1b.end ( ) );  
   if ( Result1 )  
      cout << "All the elements in vector v1b are "  
           << "contained in vector v1a." << endl;  
   else  
      cout << "At least one of the elements in vector v1b "  
           << "is not contained in vector v1a." << endl;  
  
   // To test for inclusion under descending  
   // order specify binary predicate greater<int>( )  
   bool Result2;  
   Result2 = includes ( v2a.begin ( ) , v2a.end ( ) ,  
      v2b.begin ( ) , v2b.end ( ) , greater <int> ( ) );  
   if ( Result2 )  
      cout << "All the elements in vector v2b are "  
           << "contained in vector v2a." << endl;  
   else  
      cout << "At least one of the elements in vector v2b "  
           << "is not contained in vector v2a." << endl;  
  
   // To test for inclusion under a user  
   // defined binary predicate mod_lesser  
   bool Result3;  
   Result3 = includes ( v3a.begin ( ) , v3a.end ( ) ,  
      v3b.begin ( ) , v3b.end ( ) , mod_lesser );  
   if ( Result3 )  
      cout << "All the elements in vector v3b are "  
           << "contained under mod_lesser in vector v3a."  
           << endl;  
   else  
      cout << "At least one of the elements in vector v3b is "  
           << " not contained under mod_lesser in vector v3a."   
           << endl;  
}  
Original vector v1a with range sorted by the  
 binary predicate less than is v1a = ( -2 -1 0 1 2 3 4 ).  
Original vector v1b with range sorted by the  
 binary predicate less than is v1b = ( -2 -1 0 1 2 3 ).  
Original vector v2a with range sorted by the  
 binary predicate greater is v2a = ( 4 3 2 1 0 -1 ).  
Original vector v2b with range sorted by the  
 binary predicate greater is v2b = ( 3 2 1 0 -1 -2 ).  
Original vector v3a with range sorted by the  
 binary predicate mod_lesser is v3a = ( 0 1 2 3 4 ).  
Original vector v3b with range sorted by the  
 binary predicate mod_lesser is v3b = ( 0 -1 1 -2 2 3 ).  
All the elements in vector v1b are contained in vector v1a.  
At least one of the elements in vector v2b is not contained in vector v2a.  
At least one of the elements in vector v3b is  not contained under mod_lesser in vector v3a.  

inplace_merge

Combines the elements from two consecutive sorted ranges into a single sorted range, where the ordering criterion may be specified by a binary predicate.

template<class BidirectionalIterator>  
void inplace_merge(      
    BidirectionalIterator _First,   
    BidirectionalIterator _Middle,  
    BidirectionalIterator _Last);  
  
template<class BidirectionalIterator, class Predicate>  
void inplace_merge(  
    BidirectionalIterator _First,   
    BidirectionalIterator _Middle,  
    BidirectionalIterator _Last,  
    Predicate _Comp);  

Parameters

_First
A bidirectional iterator addressing the position of the first element in the first of two consecutive sorted ranges to be combined and sorted into a single range.

_Middle
A bidirectional iterator addressing the position of the first element in the second of two consecutive sorted ranges to be combined and sorted into a single range.

_Last
A bidirectional iterator addressing the position one past the last element in the second of two consecutive sorted ranges to be combined and sorted into a single range.

_Comp
User-defined predicate function object that defines the sense in which one element is greater than another. The binary predicate takes two arguments and should return true when the first element is less than the second element and false otherwise.

Remarks

The sorted consecutive ranges referenced must be valid; all pointers must be dereferenceable and, within each sequence, the last position must be reachable from the first by incrementation.

The sorted consecutive ranges must each be arranged as a precondition to the application of the inplace_merge algorithm in accordance with the same ordering as is to be used by the algorithm to sort the combined ranges. The operation is stable as the relative order of elements within each range is preserved. When there are equivalent elements in both source ranges, the element is the first range precedes the element from the second in the combined range.

The complexity depends on the available memory as the algorithm allocates memory to a temporary buffer. If sufficient memory is available, the best case is linear with ( _Last – _First) – 1 comparisons; if no auxiliary memory is available, the worst case is N log (N), where N = ( _Last – _First).

Example

// alg_inplace_merge.cpp  
// compile with: /EHsc  
#include <vector>  
#include <algorithm>  
#include <functional>      //For greater<int>( )  
#include <iostream>  
  
// Return whether modulus of elem1 is less than modulus of elem2  
bool mod_lesser ( int elem1, int elem2 )  
{  
   if ( elem1 < 0 )   
      elem1 = - elem1;  
   if ( elem2 < 0 )   
      elem2 = - elem2;  
   return elem1 < elem2;  
}  
  
int main( )  
{  
   using namespace std;  
   vector <int> v1;  
   vector <int>::iterator Iter1, Iter2, Iter3;  
  
   // Constructing vector v1 with default less-than ordering  
   int i;  
   for ( i = 0 ; i <= 5 ; i++ )  
   {  
      v1.push_back( i );  
   }  
  
   int ii;  
   for ( ii =-5 ; ii <= 0 ; ii++ )  
   {  
      v1.push_back(  ii  );  
   }  
  
   cout << "Original vector v1 with subranges sorted by the\n "  
        <<  "binary predicate less than is  v1 = ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")" << endl;  
  
   // Constructing vector v2 with ranges sorted by greater  
   vector <int> v2 ( v1 );  
   vector <int>::iterator break2;  
   break2 = find ( v2.begin ( ) , v2.end ( ) , -5 );  
   sort ( v2.begin ( ) , break2 , greater<int> ( ) );  
   sort ( break2 , v2.end ( ) , greater<int> ( ) );  
   cout << "Original vector v2 with subranges sorted by the\n "  
        << "binary predicate greater is v2 = ( " ;  
   for ( Iter2 = v2.begin( ) ; Iter2 != v2.end( ) ; Iter2++ )  
      cout << *Iter2 << " ";  
   cout << ")" << endl;  
  
   // Constructing vector v3 with ranges sorted by mod_lesser  
   vector <int> v3 ( v1 );  
   vector <int>::iterator break3;  
   break3 = find ( v3.begin ( ) , v3.end ( ) , -5 );  
   sort ( v3.begin ( ) , break3 , mod_lesser );  
   sort ( break3 , v3.end ( ) , mod_lesser );  
   cout << "Original vector v3 with subranges sorted by the\n "  
        << "binary predicate mod_lesser is v3 = ( " ;  
   for ( Iter3 = v3.begin( ) ; Iter3 != v3.end( ) ; Iter3++ )  
      cout << *Iter3 << " ";  
   cout << ")" << endl;  
  
   vector <int>::iterator break1;  
   break1 = find (v1.begin ( ) , v1.end ( ) , -5 );  
   inplace_merge ( v1.begin( ), break1, v1.end( ) );  
   cout << "Merged inplace with default order,\n vector v1mod = ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")" << endl;  
  
   // To merge inplace in descending order, specify binary   
   // predicate greater<int>( )  
   inplace_merge ( v2.begin( ), break2 , v2.end( ) , greater<int>( ) );  
   cout << "Merged inplace with binary predicate greater specified,\n "  
        << "vector v2mod = ( " ;  
   for ( Iter2 = v2.begin( ) ; Iter2 != v2.end( ) ; Iter2++ )  
      cout << *Iter2 << " ";  
   cout << ")" << endl;  
  
   // Applying a user defined (UD) binary predicate mod_lesser  
   inplace_merge ( v3.begin( ), break3, v3.end( ), mod_lesser );  
   cout << "Merged inplace with binary predicate mod_lesser specified,\n "  
        << "vector v3mod = ( " ; ;  
   for ( Iter3 = v3.begin( ) ; Iter3 != v3.end( ) ; Iter3++ )  
      cout << *Iter3 << " ";  
   cout << ")" << endl;  
}  
Original vector v1 with subranges sorted by the  
 binary predicate less than is  v1 = ( 0 1 2 3 4 5 -5 -4 -3 -2 -1 0 )  
Original vector v2 with subranges sorted by the  
 binary predicate greater is v2 = ( 5 4 3 2 1 0 0 -1 -2 -3 -4 -5 )  
Original vector v3 with subranges sorted by the  
 binary predicate mod_lesser is v3 = ( 0 1 2 3 4 5 0 -1 -2 -3 -4 -5 )  
Merged inplace with default order,  
 vector v1mod = ( -5 -4 -3 -2 -1 0 0 1 2 3 4 5 )  
Merged inplace with binary predicate greater specified,  
 vector v2mod = ( 5 4 3 2 1 0 0 -1 -2 -3 -4 -5 )  
Merged inplace with binary predicate mod_lesser specified,  
 vector v3mod = ( 0 0 1 -1 2 -2 3 -3 4 -4 5 -5 )  

is_heap

Returns true if the elements in the specified range form a heap.

template<class RandomAccessIterator>  
bool is_heap(  
    RandomAccessIterator _First,  
    RandomAccessIterator _Last);  

template<class RandomAccessIterator, class BinaryPredicate>  
bool is_heap(  
    RandomAccessIterator _First,  
    RandomAccessIterator _Last,  
    BinaryPredicate _Comp);   

Parameters

_First
A random access iterator that indicates the start of a range to check for a heap.

_Last
A random access iterator that indicates the end of a range.

_Comp
A condition to test to order elements. A binary predicate takes a single argument and returns trueor false.

Return Value

Returns true if the elements in the specified range form a heap, false if they do not.

Remarks

The first template function returns is_heap_until(``_First``, _Last``) == _Last.

The second template function returns

is_heap_until ( _First ,  _Last ,  _Comp ) ==  _Last.

is_heap_until

Returns an iterator positioned at the first element in the range [ begin, end) that does not satisfy the heap ordering condition, or end if the range forms a heap.

template<class RandomAccessIterator>  
RandomAccessIterator is_heap_until(  
    RandomAccessIterator begin,   
    RandomAccessIterator end);  
    
template<class RandomAccessIterator, class BinaryPredicate>   
RandomAccessIterator is_heap_until(  
    RandomAccessIterator begin,   
    RandomAccessIterator end,   
    BinaryPredicate compare);  

Parameters

begin
A random access iterator that specifies the first element of a range to check for a heap.

end
A random access iterator that specifies the end of the range to check for a heap.

compare
A binary predicate that specifies the strict weak ordering condition that defines a heap. The default predicate when compare is not specified is std::less<>.

Return Value

Returns end if the specified range forms a heap or contains one or fewer elements. Otherwise, returns an iterator for the first element found that does not satisfy the heap condition.

Remarks

The first template function returns the last iterator next in [``begin``, end``] where [``begin``, next) is a heap ordered by the function object std::less<>. If the distance end - begin < 2, the function returns end.

The second template function behaves the same as the first, except that it uses the predicate compare instead of std::less<> as the heap ordering condition.

is_partitioned

Returns true if all the elements in the given range that test true for a condition come before any elements that test false.

template<class InputIterator, class BinaryPredicate>  
bool is_partitioned(  
    InputIterator _First,   
    InputIterator _Last,  
    BinaryPredicate _Comp);  

Parameters

_First
An input iterator that indicates where a range starts to check for a condition.

_Last
An input iterator that indicates the end of a range.

_Comp
The condition to test for. This is provided by a user-defined predicate function object that defines the condition to be satisfied by the element being searched for. A predicate takes a single argument and returns trueor false.

Return Value

Returns true when all of the elements in the given range that test true for a condition come before any elements that test false, and otherwise returns false.

Remarks

The template function returns true only if all elements in [``_First``, _Last``) are partitioned by _Comp; that is, all elements X in [``_First``, _Last``) for which _Comp``(X) is true occur before all elements Y for which _Comp``(Y) is false.

is_permutation

Returns true if both ranges contain the same elements, whether or not the elements are in the same order. Use the dual-range overloads in C++14 code because the overloads that only take a single iterator for the second range will not detect differences if the second range is longer than the first range, and will result in undefined behavior if the second range is shorter than the first range.

template<class ForwardIterator1, class ForwardIterator2>  
bool is_permutation(
    ForwardIterator1 First1, 
    ForwardIterator1 Last1, 
    ForwardIterator2 First2);

template<class ForwardIterator1, class ForwardIterator2, class Predicate>  
bool is_permutation(
    ForwardIterator1 First1, 
    ForwardIterator1 Last1, 
    ForwardIterator2 First2, 
    Predicate Pred);

// C++14  
template<class ForwardIterator1, class ForwardIterator2>  
bool is_permutation(
    ForwardIterator1 First1, 
    ForwardIterator1 Last1, 
    ForwardIterator2 First2, 
    ForwardIterator2 Last2);

template<class ForwardIterator1, class ForwardIterator2, class Predicate>  
bool is_permutation(
    ForwardIterator1 First1, 
    ForwardIterator1 Last1, 
    ForwardIterator2 First2, 
    ForwardIterator2 Last2, 
    Predicate Pred);  

Parameters

First1
A forward iterator that refers to the first element of the range.

Last1
A forward iterator that refers one past the last element of the range.

First2
A forward iterator that refers to the first element of a second range, used for comparison.

Last2
A forward iterator that refers to one past the last element of a second range, used for comparison.

Pred
A predicate that tests for equivalence and returns a bool.

Return Value

true when the ranges can be rearranged so as to be identical according to the comparator predicate; otherwise, false.

Remarks

is_permutation has quadratic complexity in the worst case.

The first template function assumes that there are as many elements in the range beginning at First2 as there are in the range designated by [ First1, Last1). If there are more elements in the second range, they are ignored; if there are less, undefined behavior will occur. The third template function (C++14 and later) does not make this assumption. Both return true only if, for each element X in the range designated by [ First1, Last1) there are as many elements Y in the same range for which X == Y as there are in the range beginning at First2 or [ First2, Last2). Here, operator== must perform a pairwise comparison between its operands.

The second and fourth template functions behave the same, except that they replace operator==(X, Y) with Pred(X, Y). To behave correctly, the predicate must be symmetric, reflexive and transitive.

Example

The following example shows how to use is_permutation:

#include <vector>  
#include <iostream>  
#include <algorithm>  
#include <string>  
  
using namespace std;  
  
int main()  
{  
    vector<int> vec_1{ 2, 3, 0, 1, 4, 5 };  
    vector<int> vec_2{ 5, 4, 0, 3, 1, 2 };  
  
    vector<int> vec_3{ 4, 9, 13, 3, 6, 5 };  
    vector<int> vec_4{ 7, 4, 11, 9, 2, 1 };  
  
    cout << "(1) Compare using built-in == operator: ";  
    cout << boolalpha << is_permutation(vec_1.begin(), vec_1.end(),  
        vec_2.begin(), vec_2.end()) << endl; // true  
  
    cout << "(2) Compare after modifying vec_2: ";  
    vec_2[0] = 6;  
    cout << is_permutation(vec_1.begin(), vec_1.end(),  
        vec_2.begin(), vec_2.end()) << endl; // false  
  
    // Define equivalence as "both are odd or both are even"  
    cout << "(3) vec_3 is a permutation of vec_4: ";  
    cout << is_permutation(vec_3.begin(), vec_3.end(),  
        vec_4.begin(), vec_4.end(),  
        [](int lhs, int rhs) { return lhs % 2 == rhs % 2; }) << endl; // true  
  
    // Initialize a vector using the 's' string literal to specify a std::string  
    vector<string> animals_1{ "dog"s, "cat"s, "bird"s, "monkey"s };  
    vector<string> animals_2{ "donkey"s, "bird"s, "meerkat"s, "cat"s };  
  
    // Define equivalence as "first letters are equal":  
    bool is_perm = is_permutation(animals_1.begin(), animals_1.end(), animals_2.begin(), animals_2.end(),  
        [](const string& lhs, const string& rhs)  
    {  
        return lhs[0] == rhs[0]; //std::string guaranteed to have at least a null terminator  
    });  
  
    cout << "animals_2 is a permutation of animals_1: " << is_perm << endl; // true  
  
    cout << "Press a letter" << endl;  
    char c;  
    cin >> c;  
  
    return 0;  
}  
  

is_sorted

Returns true if the elements in the specified range are in sorted order.

template<class ForwardIterator>  
bool is_sorted(  
    ForwardIterator _First,   
    ForwardIterator _Last);

template<class ForwardIterator, class BinaryPredicate>  
bool is_sorted(  
    ForwardIterator _First,   
    ForwardIterator _Last,   
    BinaryPredicate _Comp);  

Parameters

_First
A forward iterator that indicates where the range to check begins.

_Last
A forward iterator that indicates the end of a range.

_Comp
The condition to test to determine an order between two elements. A predicate takes a single argument and returns true or false. This performs the same task as operator<.

Remarks

The first template function returns is_sorted_until(``_First``, _Last``) == _Last. The operator< function performs the order comparison.

The second template function returns is_sorted_until``(``_First``, _Last``, _Comp``) == _Last. The _Comp predicate function performs the order comparison.

is_sorted_until

Returns a ForwardIterator that is set to the last element that is in sorted order from a specified range.

The second version lets you provide a BinaryPredicate function that returns true when two given elements are in sorted order, and false otherwise.

template<class ForwardIterator>  
    ForwardIterator is_sorted_until(  
        ForwardIterator _First,   
        ForwardIterator _Last  
    );  
template<class ForwardIterator, class BinaryPredicate>  
    ForwardIterator is_sorted_until(  
        ForwardIterator _First,   
        ForwardIterator _Last,   
        BinaryPredicate _Comp  
    );  

Parameters

_First
A forward iterator that indicates where the range to check starts.

_Last
A forward iterator that indicates the end of a range.

_Comp
The condition to test to determine an order between two elements. A predicate takes a single argument and returns true or false.

Return Value

Returns a ForwardIterator set to the last element in sorted order. The sorted sequence starts from _First.

Remarks

The first template function returns the last iterator next in [``_First``, _Last``] so that [``_First``, next) is a sorted sequence ordered by operator<. If distance() < 2 the function returns _Last.

The second template function behaves the same, except that it replaces operator<(X, Y) with _Comp``(X, Y).

iter_swap

Exchanges two values referred to by a pair of specified iterators.

template<class ForwardIterator1, class ForwardIterator2>  
void iter_swap( ForwardIterator1 _Left, ForwardIterator2 _Right );  
  

Parameters

_Left
One of the forward iterators whose value is to be exchanged.

_Right
The second of the forward iterators whose value is to be exchanged.

Remarks

swap should be used in preference to i ter_swap, which was included in the C++ Standard for backward compatibility. If Fit1 and Fit2 are forward iterators, then iter_swap ( Fit1, Fit2 ), is equivalent to swap ( * Fit1, * Fit2 ).

The value types of the input forward iterators must have the same value.

Example

// alg_iter_swap.cpp  
// compile with: /EHsc  
#include <vector>  
#include <deque>  
#include <algorithm>  
#include <iostream>  
#include <ostream>  
  
using namespace std;  
class CInt;  
ostream& operator<<( ostream& osIn, const CInt& rhs );  
  
class CInt  
{  
public:  
   CInt( int n = 0 ) : m_nVal( n ){}  
   CInt( const CInt& rhs ) : m_nVal( rhs.m_nVal ){}  
   CInt&   operator=( const CInt& rhs ) { m_nVal =  
   rhs.m_nVal; return *this; }  
   bool operator<( const CInt& rhs ) const  
      { return ( m_nVal < rhs.m_nVal );}  
   friend ostream& operator<<( ostream& osIn, const CInt& rhs );  
  
private:  
   int m_nVal;  
};  
  
inline ostream& operator<<( ostream& osIn, const CInt& rhs )  
{  
   osIn << "CInt(" << rhs.m_nVal << ")";  
   return osIn;  
}  
  
// Return whether modulus of elem1 is less than modulus of elem2  
bool mod_lesser ( int elem1, int elem2 )  
{  
   if ( elem1 < 0 )  
      elem1 = - elem1;  
   if ( elem2 < 0 )  
      elem2 = - elem2;  
   return elem1 < elem2;  
};  
  
int main( )  
{  
   CInt c1 = 5, c2 = 1, c3 = 10;  
   deque<CInt> deq1;  
   deque<CInt>::iterator d1_Iter;  
  
   deq1.push_back ( c1 );  
   deq1.push_back ( c2 );  
   deq1.push_back ( c3 );  
  
   cout << "The original deque of CInts is deq1 = (";  
   for ( d1_Iter = deq1.begin( ); d1_Iter != --deq1.end( ); d1_Iter++ )  
      cout << " " << *d1_Iter << ",";  
   d1_Iter = --deq1.end( );  
   cout << " " << *d1_Iter << " )." << endl;  
  
   // Exchanging first and last elements with iter_swap  
   iter_swap ( deq1.begin ( ) , --deq1.end ( ) );  
  
   cout << "The deque of CInts with first & last elements swapped is:\n deq1 = (";  
   for ( d1_Iter = deq1.begin( ); d1_Iter != --deq1.end( ); d1_Iter++ )  
      cout << " " << *d1_Iter << ",";  
   d1_Iter = --deq1.end( );  
   cout << " " << *d1_Iter << " )." << endl;  
  
   // Swapping back first and last elements with swap  
   swap ( *deq1.begin ( ) , *(deq1.end ( ) -1 ) );  
  
   cout << "The deque of CInts with first & last elements swapped back is:\n deq1 = (";  
   for ( d1_Iter = deq1.begin( ); d1_Iter != --deq1.end( ); d1_Iter++ )  
      cout << " " << *d1_Iter << ",";  
   d1_Iter = --deq1.end( );  
   cout << " " << *d1_Iter << " )." << endl;  
  
   // Swapping a vector element with a deque element  
   vector <int> v1;  
   vector <int>::iterator Iter1;  
   deque <int> deq2;  
   deque <int>::iterator d2_Iter;  
  
   int i;  
   for ( i = 0 ; i <= 3 ; i++ )  
   {  
      v1.push_back( i );  
   }  
  
   int ii;  
   for ( ii = 4 ; ii <= 5 ; ii++ )  
   {  
      deq2.push_back( ii );  
   }  
  
   cout << "Vector v1 is ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
  
   cout << "Deque deq2 is ( " ;  
   for ( d2_Iter = deq2.begin( ) ; d2_Iter != deq2.end( ) ; d2_Iter++ )  
      cout << *d2_Iter << " ";  
   cout << ")." << endl;  
  
   iter_swap ( v1.begin ( ) , deq2.begin ( ) );  
  
   cout << "After exchanging first elements,\n vector v1 is: v1 = ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl << " & deque deq2 is: deq2 = ( ";  
   for ( d2_Iter = deq2.begin( ) ; d2_Iter != deq2.end( ) ; d2_Iter++ )  
      cout << *d2_Iter << " ";  
   cout << ")." << endl;  
}  
The original deque of CInts is deq1 = ( CInt
(5), CInt
(1), CInt
(10) ).  
The deque of CInts with first & last elements swapped is:  
 deq1 = ( CInt
(10), CInt
(1), CInt
(5) ).  
The deque of CInts with first & last elements swapped back is:  
 deq1 = ( CInt
(5), CInt
(1), CInt
(10) ).  
Vector v1 is ( 0 1 2 3 ).  
Deque deq2 is ( 4 5 ).  
After exchanging first elements,  
 vector v1 is: v1 = ( 4 1 2 3 ).  
 & deque deq2 is: deq2 = ( 0 5 ).  

lexicographical_compare

Compares element by element between two sequences to determine which is lesser of the two.

template<class InputIterator1, class InputIterator2>  
 bool lexicographical_compare(  
     InputIterator1  _First1,  
     InputIterator1 Last1,  
     InputIterator2  _First2,  
     InputIterator2 Last2  );  
  
template<class InputIterator1, class InputIterator2, class BinaryPredicate>  
bool lexicographical_compare(  
     InputIterator1  _First1,  
     InputIterator1 Last1,  
     InputIterator2  _First2,  
     InputIterator2 Last2,  
     BinaryPredicate  _Comp  );  
  

Parameters

_First1
An input iterator addressing the position of the first element in the first range to be compared.

_Last1
An input iterator addressing the position one past the final element in the first range to be compared.

_First2
An input iterator addressing the position of the first element in the second range to be compared.

_Last2
An input iterator addressing the position one past the final element in the second range to be compared.

_Comp
User-defined predicate function object that defines sense in which one element is less than another. A binary predicate takes two arguments and returns true when satisfied and false when not satisfied.

Return Value

true if the first range is lexicographically less than the second range; otherwise false.

Remarks

A lexicographical comparison between sequences compares them element by element until:

  • It finds two corresponding elements unequal, and the result of their comparison is taken as the result of the comparison between sequences.

  • No inequalities are found, but one sequence has more elements than the other, and the shorter sequence is considered less than the longer sequence.

  • No inequalities are found and the sequences have the same number of elements, and so the sequences are equal and the result of the comparison is false.

Example

// alg_lex_comp.cpp  
// compile with: /EHsc  
#include <vector>  
#include <list>  
#include <algorithm>  
#include <iostream>  
  
// Return whether second element is twice the first  
bool twice ( int elem1, int elem2 )  
{  
   return 2 * elem1 < elem2;  
}  
  
int main( )  
{  
   using namespace std;  
   vector <int> v1, v2;  
   list <int> L1;  
   vector <int>::iterator Iter1, Iter2;  
   list <int>::iterator L1_Iter, L1_inIter;  
  
   int i;  
   for ( i = 0 ; i <= 5 ; i++ )  
   {  
      v1.push_back( 5 * i );  
   }  
   int ii;  
   for ( ii = 0 ; ii <= 6 ; ii++ )  
   {  
      L1.push_back( 5 * ii );  
   }  
  
   int iii;  
   for ( iii = 0 ; iii <= 5 ; iii++ )  
   {  
      v2.push_back( 10 * iii );  
   }  
  
   cout << "Vector v1 = ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")" << endl;  
  
   cout << "List L1 = ( " ;  
   for ( L1_Iter = L1.begin( ) ; L1_Iter!= L1.end( ) ; L1_Iter++ )  
      cout << *L1_Iter << " ";  
   cout << ")" << endl;  
  
   cout << "Vector v2 = ( " ;  
   for ( Iter2 = v2.begin( ) ; Iter2 != v2.end( ) ; Iter2++ )  
      cout << *Iter2 << " ";  
      cout << ")" << endl;  
  
   // Self lexicographical_comparison of v1 under identity  
   bool result1;  
   result1 = lexicographical_compare (v1.begin( ), v1.end( ),  
                  v1.begin( ), v1.end( ) );  
   if ( result1 )  
      cout << "Vector v1 is lexicographically_less than v1." << endl;  
   else  
      cout << "Vector v1 is not lexicographically_less than v1." << endl;  
  
   // lexicographical_comparison of v1 and L2 under identity  
   bool result2;  
   result2 = lexicographical_compare (v1.begin( ), v1.end( ),  
                  L1.begin( ), L1.end( ) );  
   if ( result2 )  
      cout << "Vector v1 is lexicographically_less than L1." << endl;  
   else  
      cout << "Vector v1 is lexicographically_less than L1." << endl;  
  
   bool result3;  
   result3 = lexicographical_compare (v1.begin( ), v1.end( ),  
                  v2.begin( ), v2.end( ), twice );  
   if ( result3 )  
      cout << "Vector v1 is lexicographically_less than v2 "  
           << "under twice." << endl;  
   else  
      cout << "Vector v1 is not lexicographically_less than v2 "  
           << "under twice." << endl;  
}  
Vector v1 = ( 0 5 10 15 20 25 )  
List L1 = ( 0 5 10 15 20 25 30 )  
Vector v2 = ( 0 10 20 30 40 50 )  
Vector v1 is not lexicographically_less than v1.  
Vector v1 is lexicographically_less than L1.  
Vector v1 is not lexicographically_less than v2 under twice.  

lower_bound

Finds the position of the first element in an ordered range that has a value greater than or equivalent to a specified value, where the ordering criterion may be specified by a binary predicate.

 template<class ForwardIterator, class Type>  
 ForwardIterator lower_bound(  
     ForwardIterator first,  
     ForwardIterator last,  
     const Type& value );  
  
template<class ForwardIterator, class Type, class BinaryPredicate>  
ForwardIterator lower_bound(   
     ForwardIterator first,  
     ForwardIterator last,  
     const Type& value,  
     BinaryPredicate comp );  
  

Parameters

first
A forward iterator addressing the position of the first element in the range to be searched.

last
A forward iterator addressing the position one past the final element in the range to be searched.

value
The value whose first position or possible first position is being searched for in the ordered range.

comp
User-defined predicate function object that defines sense in which one element is less than another. A binary predicate takes two arguments and returns true when satisfied and false when not satisfied.

Return Value

A forward iterator at the position of the first element in an ordered range with a value that is greater than or equivalent to a specified value, where the equivalence is specified with a binary predicate.

Remarks

The sorted source range referenced must be valid; all iterators must be dereferenceable and within the sequence the last position must be reachable from the first by incrementation.

A sorted range is a precondition of using lower_bound and where the ordering is the same as specified by with binary predicate.

The range is not modified by the algorithm lower_bound.

The value types of the forward iterators need be less-than comparable to be ordered, so that, given two elements, it may be determined either that they are equivalent (in the sense that neither is less than the other) or that one is less than the other. This results in an ordering between the nonequivalent elements

The complexity of the algorithm is logarithmic for random-access iterators and linear otherwise, with the number of steps proportional to ( last – first).

Example

// alg_lower_bound.cpp  
// compile with: /EHsc  
#include <vector>  
#include <algorithm>  
#include <functional>      // greater<int>( )  
#include <iostream>  
  
// Return whether modulus of elem1 is less than modulus of elem2  
bool mod_lesser( int elem1, int elem2 )  
{  
    if ( elem1 < 0 )  
        elem1 = - elem1;  
    if ( elem2 < 0 )  
        elem2 = - elem2;  
    return elem1 < elem2;  
}  
  
int main( )  
{  
    using namespace std;  
  
    vector<int> v1;  
    // Constructing vector v1 with default less-than ordering  
    for ( auto i = -1 ; i <= 4 ; ++i )  
    {  
        v1.push_back(  i );  
    }  
  
    for ( auto ii =-3 ; ii <= 0 ; ++ii )  
    {  
        v1.push_back(  ii  );  
    }  
  
    cout << "Starting vector v1 = ( " ;  
    for (const auto &Iter : v1)  
        cout << Iter << " ";  
    cout << ")." << endl;  
  
    sort(v1.begin(), v1.end());  
    cout << "Original vector v1 with range sorted by the\n "  
        << "binary predicate less than is v1 = ( " ;  
    for (const auto &Iter : v1)  
        cout << Iter << " ";  
    cout << ")." << endl;  
  
    // Constructing vector v2 with range sorted by greater  
    vector<int> v2(v1);  
  
    sort(v2.begin(), v2.end(), greater<int>());  
  
    cout << "Original vector v2 with range sorted by the\n "  
        << "binary predicate greater is v2 = ( " ;  
    for (const auto &Iter : v2)  
        cout << Iter << " ";  
    cout << ")." << endl;  
  
    // Constructing vectors v3 with range sorted by mod_lesser  
    vector<int> v3(v1);  
    sort(v3.begin(), v3.end(), mod_lesser);  
  
    cout << "Original vector v3 with range sorted by the\n "  
        <<  "binary predicate mod_lesser is v3 = ( " ;  
    for (const auto &Iter : v3)  
        cout << Iter << " ";  
    cout << ")." << endl;  
  
    // Demonstrate lower_bound  
  
    vector<int>::iterator Result;  
  
    // lower_bound of 3 in v1 with default binary predicate less<int>()  
    Result = lower_bound(v1.begin(), v1.end(), 3);  
    cout << "The lower_bound in v1 for the element with a value of 3 is: "  
        << *Result << "." << endl;  
  
    // lower_bound of 3 in v2 with the binary predicate greater<int>( )  
    Result = lower_bound(v2.begin(), v2.end(), 3, greater<int>());  
    cout << "The lower_bound in v2 for the element with a value of 3 is: "  
        << *Result << "." << endl;  
  
    // lower_bound of 3 in v3 with the binary predicate  mod_lesser  
    Result = lower_bound(v3.begin(), v3.end(), 3,  mod_lesser);  
    cout << "The lower_bound in v3 for the element with a value of 3 is: "  
        << *Result << "." << endl;  
}  
  

make_heap

Converts elements from a specified range into a heap in which the first element is the largest and for which a sorting criterion may be specified with a binary predicate.

 template<class RandomAccessIterator>  
 void make_heap(  
     RandomAccessIterator _First,  
     RandomAccessIteratorLast );  
  
template<class RandomAccessIterator, class BinaryPredicate>   
void make_heap(   
     RandomAccessIterator _First,  
     RandomAccessIteratorLast,  
     BinaryPredicate _Comp );  
  

Parameters

_First
A random-access iterator addressing the position of the first element in the range to be converted into a heap.

_Last
A random-access iterator addressing the position one past the final element in the range to be converted into a heap.

_Comp
User-defined predicate function object that defines sense in which one element is less than another. A binary predicate takes two arguments and returns true when satisfied and false when not satisfied.

Remarks

Heaps have two properties:

  • The first element is always the largest.

  • Elements may be added or removed in logarithmic time.

Heaps are an ideal way to implement priority queues and they are used in the implementation of the Standard Template Library container adaptor priority_queue Class.

The complexity is linear, requiring 3 * ( _Last – _First) comparisons.

Example

// alg_make_heap.cpp  
// compile with: /EHsc  
#include <vector>  
#include <algorithm>  
#include <functional>  
#include <iostream>  
  
int main() {  
   using namespace std;  
   vector <int> v1, v2;  
   vector <int>::iterator Iter1, Iter2;  
  
   int i;  
   for ( i = 0 ; i <= 9 ; i++ )  
      v1.push_back( i );  
  
   random_shuffle( v1.begin( ), v1.end( ) );  
  
   cout << "Vector v1 is ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
  
   // Make v1 a heap with default less than ordering  
   make_heap ( v1.begin( ), v1.end( ) );  
   cout << "The heaped version of vector v1 is ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
  
   // Make v1 a heap with greater than ordering  
   make_heap ( v1.begin( ), v1.end( ), greater<int>( ) );  
   cout << "The greater-than heaped version of v1 is ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
}  

max

Compares two objects and returns the larger of the two, where the ordering criterion may be specified by a binary predicate.

template<class Type>  
    const Type& max(  
        const Type& _Left,   
        const Type& _Right  
    );  
template<class Type, class Pr>  
    const Type& max(  
        const Type& _Left,   
        const Type& _Right,  
        BinaryPredicate _Comp  
    );  
template<class Type>   
    Type& max (  
        initializer_list<Type> _Ilist  
    );  
template<class Type, class Pr>   
    Type& max(  
        initializer_list<Type> _Ilist,   
        BinaryPredicate _Comp  
    );  

Parameters

_Left
The first of the two objects being compared.

_Right
The second of the two objects being compared.

_Comp
A binary predicate used to compare the two objects.

_IList
The initializer list that contains the objects to be compared.

Return Value

The greater of the two objects, unless neither is greater; in that case, it returns the first of the two objects. In the case of an initializer_list, it returns the greatest of the objects in the list.

Remarks

The max algorithm is unusual in having objects passed as parameters. Most Standard Template Library algorithms operate on a range of elements whose position is specified by iterators passed as parameters. If you need a function that operates on a range of elements, use max_element instead.

Example

// alg_max.cpp  
// compile with: /EHsc  
#include <vector>  
#include <set>  
#include <algorithm>  
#include <iostream>  
#include <ostream>  
  
using namespace std;  
class CInt;  
ostream& operator<<( ostream& osIn, const CInt& rhs );  
  
class CInt  
{  
public:  
   CInt( int n = 0 ) : m_nVal( n ){}  
   CInt( const CInt& rhs ) : m_nVal( rhs.m_nVal ){}  
   CInt&   operator=( const CInt& rhs ) {m_nVal =   
   rhs.m_nVal; return *this;}  
   bool operator<( const CInt& rhs ) const   
      {return ( m_nVal < rhs.m_nVal );}  
   friend ostream& operator<<( ostream& osIn, const CInt& rhs );  
  
private:  
   int m_nVal;  
};  
  
inline ostream& operator<<( ostream& osIn, const CInt& rhs )  
{  
   osIn << "CInt( " << rhs.m_nVal << " )";   
   return osIn;  
}  
  
// Return whether absolute value of elem1 is greater than   
// absolute value of elem2  
bool abs_greater ( int elem1, int elem2 )  
{  
   if ( elem1 < 0 )   
      elem1 = -elem1;  
   if ( elem2 < 0 )   
      elem2 = -elem2;  
   return elem1 < elem2;  
};  
  
int main( )  
{  
   int a = 6, b = -7;  
   // Return the integer with the larger absolute value  
   const int& result1 = max(a, b, abs_greater);  
   // Return the larger integer  
   const int& result2 = max(a, b);  
  
   cout << "Using integers 6 and -7..." << endl;  
   cout << "The integer with the greater absolute value is: "   
        << result1 << "." << endl;  
   cout << "The integer with the greater value is: "   
        << result2 << "." << endl;  
   cout << endl;  
  
// Comparing the members of an initializer_list  
const int& result3 = max({ a, b });  
const int& result4 = max({ a, b }, abs_greater);  
  
cout << "Comparing the members of an initializer_list..." << endl;  
cout << "The member with the greater value is: " << result3 << endl;  
cout << "The integer with the greater absolute value is: " << result4 << endl;  
  
   // Comparing set containers with elements of type CInt   
   // using the max algorithm  
   CInt c1 = 1, c2 = 2, c3 = 3;  
   set<CInt> s1, s2, s3;  
   set<CInt>::iterator s1_Iter, s2_Iter, s3_Iter;  
  
   s1.insert ( c1 );  
   s1.insert ( c2 );  
   s2.insert ( c2 );  
   s2.insert ( c3 );  
  
   cout << "s1 = (";  
   for ( s1_Iter = s1.begin( ); s1_Iter != --s1.end( ); s1_Iter++ )  
      cout << " " << *s1_Iter << ",";  
   s1_Iter = --s1.end( );  
   cout << " " << *s1_Iter << " )." << endl;  
  
   cout << "s2 = (";  
   for ( s2_Iter = s2.begin( ); s2_Iter != --s2.end( ); s2_Iter++ )  
      cout << " " << *s2_Iter << ",";  
   s2_Iter = --s2.end( );  
   cout << " " << *s2_Iter << " )." << endl;  
  
   s3 = max ( s1, s2 );  
   cout << "s3 = max ( s1, s2 ) = (";  
   for ( s3_Iter = s3.begin( ); s3_Iter != --s3.end( ); s3_Iter++ )  
      cout << " " << *s3_Iter << ",";  
   s3_Iter = --s3.end( );  
   cout << " " << *s3_Iter << " )." << endl << endl;  
  
   // Comparing vectors with integer elements using the max algorithm  
   vector <int> v1, v2, v3, v4, v5;  
   vector <int>::iterator Iter1, Iter2, Iter3, Iter4, Iter5;  
  
   int i;  
   for ( i = 0 ; i <= 2 ; i++ )  
   {  
      v1.push_back( i );  
   }  
  
   int ii;  
   for ( ii = 0 ; ii <= 2 ; ii++ )  
   {  
      v2.push_back( ii );  
   }  
  
   int iii;  
   for ( iii = 0 ; iii <= 2 ; iii++ )  
   {  
      v3.push_back( 2 * iii );  
   }  
  
   cout << "Vector v1 is ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
  
   cout << "Vector v2 is ( " ;  
   for ( Iter2 = v2.begin( ) ; Iter2 != v2.end( ) ; Iter2++ )  
      cout << *Iter2 << " ";  
   cout << ")." << endl;  
  
   cout << "Vector v3 is ( " ;  
   for ( Iter3 = v3.begin( ) ; Iter3 != v3.end( ) ; Iter3++ )  
      cout << *Iter3 << " ";  
   cout << ")." << endl;  
  
   v4 = max ( v1, v2 );  
   v5 = max ( v1, v3 );  
  
   cout << "Vector v4 = max (v1,v2) is ( " ;  
   for ( Iter4 = v4.begin( ) ; Iter4 != v4.end( ) ; Iter4++ )  
      cout << *Iter4 << " ";  
   cout << ")." << endl;  
  
   cout << "Vector v5 = max (v1,v3) is ( " ;  
   for ( Iter5 = v5.begin( ) ; Iter5 != v5.end( ) ; Iter5++ )  
      cout << *Iter5 << " ";  
   cout << ")." << endl;  
}  
Using integers 6 and -7...  
The integer with the greater absolute value is: -7  
The integer with the greater value is: 6.  
Comparing the members of an initializer_list...The member with the greater value is: 6The integer wiht the greater absolute value is: -7  
s1 = ( CInt( 1 ), CInt( 2 ) ).  
s2 = ( CInt( 2 ), CInt( 3 ) ).  
s3 = max ( s1, s2 ) = ( CInt( 2 ), CInt( 3 ) ).  
  
Vector v1 is ( 0 1 2 ).  
Vector v2 is ( 0 1 2 ).  
Vector v3 is ( 0 2 4 ).  
Vector v4 = max (v1,v2) is ( 0 1 2 ).  
Vector v5 = max (v1,v3) is ( 0 2 4 ).  

max_element

Finds the first occurrence of largest element in a specified range where the ordering criterion may be specified by a binary predicate.

template<class ForwardIterator>  
ForwardIterator max_element(ForwardIterator _First, ForwardIteratorLast );  
  
template<class ForwardIterator, class BinaryPredicate>  
ForwardIterator max_element(ForwardIterator _First, ForwardIteratorLast, BinaryPredicate _Comp );  
  

Parameters

_First
A forward iterator addressing the position of the first element in the range to be searched for the largest element.

_Last
A forward iterator addressing the position one past the final element in the range to be searched for the largest element.

_Comp
User-defined predicate function object that defines the sense in which one element is greater than another. The binary predicate takes two arguments and should return true when the first element is less than the second element and false otherwise.

Return Value

A forward iterator addressing the position of the first occurrence of the largest element in the range searched.

Remarks

The range referenced must be valid; all pointers must be dereferenceable and within each sequence the last position is reachable from the first by incrementation.

The complexity is linear: ( _Last_First) – 1 comparisons are required for a nonempty range.

Example

// alg_max_element.cpp  
// compile with: /EHsc  
#include <vector>  
#include <set>  
#include <algorithm>  
#include <iostream>  
#include <ostream>  
  
using namespace std;  
class CInt;  
ostream& operator<<( ostream& osIn, const CInt& rhs );  
  
class CInt  
{  
public:  
   CInt( int n = 0 ) : m_nVal( n ){}  
   CInt( const CInt& rhs ) : m_nVal( rhs.m_nVal ){}  
   CInt& operator=( const CInt& rhs ) {m_nVal =   
   rhs.m_nVal; return *this;}  
   bool operator<( const CInt& rhs ) const   
      {return ( m_nVal < rhs.m_nVal );}  
   friend ostream& operator<<( ostream& osIn, const CInt& rhs );  
  
private:  
   int m_nVal;  
};  
  
inline ostream& operator<<(ostream& osIn, const CInt& rhs)  
{  
   osIn << "CInt( " << rhs.m_nVal << " )";   
   return osIn;  
}  
  
// Return whether modulus of elem1 is greater than modulus of elem2  
bool mod_lesser ( int elem1, int elem2 )  
{  
   if ( elem1 < 0 )   
      elem1 = - elem1;  
   if ( elem2 < 0 )   
      elem2 = - elem2;  
   return elem1 < elem2;  
};  
  
int main( )  
{  
   // Searching a set container with elements of type CInt   
   // for the maximum element   
   CInt c1 = 1, c2 = 2, c3 = -3;  
   set<CInt> s1;  
   set<CInt>::iterator s1_Iter, s1_R1_Iter, s1_R2_Iter;  
  
   s1.insert ( c1 );  
   s1.insert ( c2 );  
   s1.insert ( c3 );  
  
   cout << "s1 = (";  
   for ( s1_Iter = s1.begin( ); s1_Iter != --s1.end( ); s1_Iter++ )  
      cout << " " << *s1_Iter << ",";  
   s1_Iter = --s1.end( );  
   cout << " " << *s1_Iter << " )." << endl;  
  
   s1_R1_Iter = max_element ( s1.begin ( ) , s1.end ( ) );  
  
   cout << "The largest element in s1 is: " << *s1_R1_Iter << endl;  
   cout << endl;  
  
   // Searching a vector with elements of type int for the maximum  
   // element under default less than & mod_lesser binary predicates  
   vector <int> v1;  
   vector <int>::iterator v1_Iter, v1_R1_Iter, v1_R2_Iter;  
  
   int i;  
   for ( i = 0 ; i <= 3 ; i++ )  
   {  
      v1.push_back( i );  
   }  
  
   int ii;  
   for ( ii = 1 ; ii <= 4 ; ii++ )  
   {  
      v1.push_back( - 2 * ii );  
   }  
  
   cout << "Vector v1 is ( " ;  
   for ( v1_Iter = v1.begin( ) ; v1_Iter != v1.end( ) ; v1_Iter++ )  
      cout << *v1_Iter << " ";  
   cout << ")." << endl;  
  
   v1_R1_Iter = max_element ( v1.begin ( ) , v1.end ( ) );  
   v1_R2_Iter = max_element ( v1.begin ( ) , v1.end ( ), mod_lesser);  
  
   cout << "The largest element in v1 is: " << *v1_R1_Iter << endl;  
   cout << "The largest element in v1 under the mod_lesser"  
        << "\n binary predicate is: " << *v1_R2_Iter << endl;  
}  

merge

Combines all of the elements from two sorted source ranges into a single, sorted destination range, where the ordering criterion may be specified by a binary predicate.

template<class InputIterator1, class InputIterator2, class OutputIterator>  
 OutputIterator merge(   
     InputIterator1 _First1,   
     InputIterator1Last1,   
     InputIterator2 _First2,   
     InputIterator2Last2,   
     OutputIterator _Result );   
  
template<class InputIterator1, class InputIterator2, class OutputIterator, class BinaryPredicate>  
OutputIterator merge(   
     InputIterator1 _First1,   
     InputIterator1Last1,   
     InputIterator2 _First2,   
     InputIterator2Last2,   
     OutputIterator _Result,  
     BinaryPredicate _Comp );  
  

Parameters

_First1
An input iterator addressing the position of the first element in the first of two sorted source ranges to be combined and sorted into a single range.

_Last1
An input iterator addressing the position one past the last element in the first of two sorted source ranges to be combined and sorted into a single range.

_First2
An input iterator addressing the position of the first element in second of two consecutive sorted source ranges to be combined and sorted into a single range.

_Last2
An input iterator addressing the position one past the last element in second of two consecutive sorted source ranges to be combined and sorted into a single range.

_Result
An output iterator addressing the position of the first element in the destination range where the two source ranges are to be combined into a single sorted range.

_Comp
User-defined predicate function object that defines the sense in which one element is greater than another. The binary predicate takes two arguments and should return true when the first element is less than the second element and false otherwise.

Return Value

An output iterator addressing the position one past the last element in the sorted destination range.

Remarks

The sorted source ranges referenced must be valid; all pointers must be dereferenceable and within each sequence the last position must be reachable from the first by incrementation.

The destination range should not overlap either of the source ranges and should be large enough to contain the destination range.

The sorted source ranges must each be arranged as a precondition to the application of the merge algorithm in accordance with the same ordering as is to be used by the algorithm to sort the combined ranges.

The operation is stable as the relative order of elements within each range is preserved in the destination range. The source ranges are not modified by the algorithm merge.

The value types of the input iterators need be less-than comparable to be ordered, so that, given two elements, it may be determined either that they are equivalent (in the sense that neither is less than the other) or that one is less than the other. This results in an ordering between the nonequivalent elements. When there are equivalent elements in both source ranges, the elements in the first range precede the elements from the second source range in the destination range.

The complexity of the algorithm is linear with at most ( _Last1 – _First1) – ( _Last2 – _First2) – 1 comparisons.

The list class provides a member function "merge" to merge the elements of two lists.

Example

// alg_merge.cpp  
// compile with: /EHsc  
#include <vector>  
#include <algorithm>  
#include <functional>   // For greater<int>( )  
#include <iostream>  
  
// Return whether modulus of elem1 is less than modulus of elem2  
bool mod_lesser ( int elem1, int elem2 ) {  
   if (elem1 < 0)   
      elem1 = - elem1;  
   if (elem2 < 0)   
      elem2 = - elem2;  
   return elem1 < elem2;  
}  
  
int main() {  
   using namespace std;  
   vector <int> v1a, v1b, v1 ( 12 );  
   vector <int>::iterator Iter1a,  Iter1b, Iter1;  
  
   // Constructing vector v1a and v1b with default less than ordering  
   int i;  
   for ( i = 0 ; i <= 5 ; i++ )  
      v1a.push_back(  i );  
  
   int ii;  
   for ( ii =-5 ; ii <= 0 ; ii++ )  
      v1b.push_back(  ii  );  
  
   cout << "Original vector v1a with range sorted by the\n "  
        << "binary predicate less than is  v1a = ( " ;  
   for ( Iter1a = v1a.begin( ) ; Iter1a != v1a.end( ) ; Iter1a++ )  
      cout << *Iter1a << " ";  
   cout << ")." << endl;  
  
   cout << "Original vector v1b with range sorted by the\n "  
        << "binary predicate less than is  v1b = ( " ;  
   for ( Iter1b = v1b.begin ( ) ; Iter1b != v1b.end ( ) ; Iter1b++ )  
      cout << *Iter1b << " ";  
   cout << ")." << endl;  
  
   // Constructing vector v2 with ranges sorted by greater  
   vector <int> v2a ( v1a ) , v2b ( v1b ) ,  v2 ( v1 );  
   vector <int>::iterator Iter2a,  Iter2b, Iter2;  
   sort ( v2a.begin ( ) , v2a.end ( ) , greater<int> ( ) );  
   sort ( v2b.begin ( ) , v2b.end ( ) , greater<int> ( ) );  
  
   cout << "Original vector v2a with range sorted by the\n "  
        <<  "binary predicate greater is   v2a =  ( " ;  
   for ( Iter2a = v2a.begin ( ) ; Iter2a != v2a.end ( ) ; Iter2a++ )  
      cout << *Iter2a << " ";  
   cout << ")." << endl;  
  
   cout << "Original vector v2b with range sorted by the\n "  
        <<  "binary predicate greater is   v2b =  ( " ;  
   for ( Iter2b = v2b.begin ( ) ; Iter2b != v2b.end ( ) ; Iter2b++ )  
      cout << *Iter2b << " ";  
   cout << ")." << endl;  
  
   // Constructing vector v3 with ranges sorted by mod_lesser  
   vector <int> v3a ( v1a ), v3b ( v1b ) ,  v3 ( v1 );  
   vector <int>::iterator Iter3a,  Iter3b, Iter3;  
   sort ( v3a.begin ( ) , v3a.end ( ) , mod_lesser );  
   sort ( v3b.begin ( ) , v3b.end ( ) , mod_lesser );  
  
   cout << "Original vector v3a with range sorted by the\n "  
        << "binary predicate mod_lesser is   v3a =  ( " ;  
   for ( Iter3a = v3a.begin ( ) ; Iter3a != v3a.end ( ) ; Iter3a++ )  
      cout << *Iter3a << " ";  
   cout << ")." << endl;  
  
   cout << "Original vector v3b with range sorted by the\n "  
        << "binary predicate mod_lesser is   v3b =  ( " ;  
   for ( Iter3b = v3b.begin ( ) ; Iter3b != v3b.end ( ) ; Iter3b++ )  
      cout << *Iter3b << " ";  
   cout << ")." << endl;  
  
   // To merge inplace in ascending order with default binary   
   // predicate less <int> ( )  
   merge ( v1a.begin ( ) , v1a.end ( ) , v1b.begin ( ) , v1b.end ( ) , v1.begin ( ) );  
   cout << "Merged inplace with default order,\n vector v1mod =  ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
  
   // To merge inplace in descending order, specify binary   
   // predicate greater<int>( )  
   merge ( v2a.begin ( ) , v2a.end ( ) , v2b.begin ( ) , v2b.end ( ) ,  
       v2.begin ( ) ,  greater <int> ( ) );  
   cout << "Merged inplace with binary predicate greater specified,\n "  
        << "vector v2mod  = ( " ;  
   for ( Iter2 = v2.begin( ) ; Iter2 != v2.end( ) ; Iter2++ )  
      cout << *Iter2 << " ";  
   cout << ")." << endl;  
  
   // Applying A user-defined (UD) binary predicate mod_lesser  
   merge ( v3a.begin ( ) , v3a.end ( ) , v3b.begin ( ) , v3b.end ( ) ,  
       v3.begin ( ) ,  mod_lesser );  
   cout << "Merged inplace with binary predicate mod_lesser specified,\n "  
        << "vector v3mod  = ( " ; ;  
   for ( Iter3 = v3.begin( ) ; Iter3 != v3.end( ) ; Iter3++ )  
      cout << *Iter3 << " ";  
   cout << ")." << endl;  
}  

min

Compares two objects and returns the lesser of the two, where the ordering criterion may be specified by a binary predicate.

template<class Type>  
    const Type& min(  
        const Type& _Left,   
        const Type& _Right  
    );  
template<class Type, class Pr>  
    const Type& min(  
        const Type& _Left,   
        const Type& _Right,  
        BinaryPredicate _Comp  
    );  
template<class Type>   
    Type min ( initializer_list<Type> _Ilist  
    );  
template<class Type, class Pr>    Type min (  
        initializer_list<Type> _Ilist,   
        BinaryPredicate _Comp  
    );  
  

Parameters

_Left
The first of the two objects being compared.

_Right
The second of the two objects being compared.

_Comp
A binary predicate used to compare the two objects.

_IList
The initializer_list that contains the members to be compared.

Return Value

The lesser of the two objects, unless neither is lesser; in that case, it returns the first of the two objects. In the case of an initializer_list, it returns the least of the objects in the list.

Remarks

The min algorithm is unusual in having objects passed as parameters. Most Standard Template Library algorithms operate on a range of elements whose position is specified by iterators passed as parameters. If you need a function that uses a range of elements, use min_element.

Example

// alg_min.cpp  
// compile with: /EHsc  
#include <vector>  
#include <set>  
#include <algorithm>  
#include <iostream>  
#include <ostream>  
  
using namespace std;  
class CInt;  
ostream& operator<<( ostream& osIn, const CInt& rhs );  
  
class CInt  
{  
public:  
    CInt( int n = 0 ) : m_nVal( n ){}  
    CInt( const CInt& rhs ) : m_nVal( rhs.m_nVal ){}  
    CInt& operator=( const CInt& rhs ) {m_nVal =   
    rhs.m_nVal; return *this;}  
    bool operator<( const CInt& rhs ) const   
        {return ( m_nVal < rhs.m_nVal );}  
    friend ostream& operator<<(ostream& osIn, const CInt& rhs);  
  
private:  
    int m_nVal;  
};  
  
inline ostream& operator<<( ostream& osIn, const CInt& rhs )  
{  
    osIn << "CInt( " << rhs.m_nVal << " )";   
       return osIn;  
}  
  
// Return whether modulus of elem1 is less than modulus of elem2  
bool mod_lesser ( int elem1, int elem2 )  
{  
    if ( elem1 < 0 )   
        elem1 = - elem1;  
    if ( elem2 < 0 )   
        elem2 = - elem2;  
    return elem1 < elem2;  
};  
  
int main( )  
{  
    // Comparing integers directly using the min algorithm with  
    // binary predicate mod_lesser & with default less than  
    int a = 6, b = -7, c = 7 ;  
    const int& result1 = min ( a, b, mod_lesser );  
    const int& result2 = min ( b, c );  
  
    cout << "The mod_lesser of the integers 6 & -7 is: "   
        << result1 << "." << endl;  
     cout << "The lesser of the integers -7 & 7 is: "   
        << result2 << "." << endl;  
    cout << endl;  
  
// Comparing the members of an initializer_list  
    const int& result3 = min({ a, c });  
    const int& result4 = min({ a, b }, mod_lesser);  
  
    cout << "The lesser of the integers 6 & 7 is: "  
        << result3 << "." << endl;  
    cout << "The mod_lesser of the integers 6 & -7 is: "  
        << result4 << "." << endl;  
    cout << endl;  
  
    // Comparing set containers with elements of type CInt   
       // using the min algorithm  
    CInt c1 = 1, c2 = 2, c3 = 3;  
    set<CInt> s1, s2, s3;  
    set<CInt>::iterator s1_Iter, s2_Iter, s3_Iter;  
  
    s1.insert ( c1 );  
    s1.insert ( c2 );  
    s2.insert ( c2 );  
    s2.insert ( c3 );  
  
    cout << "s1 = (";  
    for ( s1_Iter = s1.begin( ); s1_Iter != --s1.end( ); s1_Iter++ )  
        cout << " " << *s1_Iter << ",";  
    s1_Iter = --s1.end( );  
        cout << " " << *s1_Iter << " )." << endl;  
  
    cout << "s2 = (";  
    for ( s2_Iter = s2.begin( ); s2_Iter != --s2.end( ); s2_Iter++ )  
        cout << " " << *s2_Iter << ",";  
    s2_Iter = --s2.end( );  
    cout << " " << *s2_Iter << " )." << endl;  
  
    s3 = min ( s1, s2 );  
    cout << "s3 = min ( s1, s2 ) = (";  
    for ( s3_Iter = s3.begin( ); s3_Iter != --s3.end( ); s3_Iter++ )  
        cout << " " << *s3_Iter << ",";  
    s3_Iter = --s3.end( );  
    cout << " " << *s3_Iter << " )." << endl << endl;  
  
    // Comparing vectors with integer elements using min algorithm  
    vector <int> v1, v2, v3, v4, v5;  
    vector <int>::iterator Iter1, Iter2, Iter3, Iter4, Iter5;  
  
    int i;  
    for ( i = 0 ; i <= 2 ; i++ )  
    {  
        v1.push_back( i );  
    }  
  
    int ii;  
    for ( ii = 0 ; ii <= 2 ; ii++ )  
    {  
        v2.push_back( ii );  
    }  
  
    int iii;  
    for ( iii = 0 ; iii <= 2 ; iii++ )  
    {  
        v3.push_back( 2 * iii );  
    }  
  
    cout << "Vector v1 is ( " ;  
    for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
        cout << *Iter1 << " ";  
    cout << ")." << endl;  
  
    cout << "Vector v2 is ( " ;  
    for ( Iter2 = v2.begin( ) ; Iter2 != v2.end( ) ; Iter2++ )  
        cout << *Iter2 << " ";  
    cout << ")." << endl;  
  
    cout << "Vector v3 is ( " ;  
    for ( Iter3 = v3.begin( ) ; Iter3 != v3.end( ) ; Iter3++ )  
        cout << *Iter3 << " ";  
    cout << ")." << endl;  
  
    v4 = min ( v1, v2 );  
    v5 = min ( v1, v3 );  
  
    cout << "Vector v4 = min ( v1,v2 ) is ( " ;  
    for ( Iter4 = v4.begin( ) ; Iter4 != v4.end( ) ; Iter4++ )  
        cout << *Iter4 << " ";  
    cout << ")." << endl;  
  
    cout << "Vector v5 = min ( v1,v3 ) is ( " ;  
    for ( Iter5 = v5.begin( ) ; Iter5 != v5.end( ) ; Iter5++ )  
        cout << *Iter5 << " ";  
    cout << ")." << endl;  
}  
The mod_lesser of the integers 6 & -7 is: 6.  
The lesser of the integers -7 & 7 is: -7.  
The lesser of the integers 6 & 7 is: 6.The mod_lesser of the integers 6 & -7 is: 6.  
s1 = ( CInt
( 1 ), CInt
( 2 ) ).  
s2 = ( CInt
( 2 ), CInt
( 3 ) ).  
s3 = min ( s1, s2 ) = ( CInt
( 1 ), CInt
( 2 ) ).  
  
Vector v1 is ( 0 1 2 ).  
Vector v2 is ( 0 1 2 ).  
Vector v3 is ( 0 2 4 ).  
Vector v4 = min ( v1,v2 ) is ( 0 1 2 ).  
Vector v5 = min ( v1,v3 ) is ( 0 1 2 ).  

min_element

Finds the first occurrence of smallest element in a specified range where the ordering criterion may be specified by a binary predicate.

 template<class ForwardIterator>  
 ForwardIterator min_element(ForwardIterator first, ForwardIterator last );  
  
template<class ForwardIterator, class BinaryPredicate>  
ForwardIterator min_element(ForwardIterator first, ForwardIterator last, BinaryPredicate comp);  
  

Parameters

first
A forward iterator addressing the position of the first element in the range to be searched for the smallest element.

last
A forward iterator addressing the position one past the final element in the range to be searched for the smallest element.

comp
User-defined predicate function object that defines the sense in which one element is greater than another. The binary predicate takes two arguments and should return true when the first element is less than the second element and false otherwise.

Return Value

A forward iterator addressing the position of the first occurrence of the smallest element in the range searched.

Remarks

The range referenced must be valid; all pointers must be dereferenceable and within each sequence the last position is reachable from the first by incrementation.

The complexity is linear: ( lastfirst) – 1 comparisons are required for a nonempty range.

Example

// alg_min_element.cpp  
// compile with: /EHsc  
#include <vector>  
#include <set>  
#include <algorithm>  
#include <iostream>  
#include <ostream>  
  
using namespace std;  
class CInt;  
ostream& operator<<( ostream& osIn, const CInt& rhs );  
  
class CInt  
{  
public:  
   CInt( int n = 0 ) : m_nVal( n ){}  
   CInt( const CInt& rhs ) : m_nVal( rhs.m_nVal ){}  
   CInt& operator=( const CInt& rhs ) {m_nVal =   
   rhs.m_nVal; return *this;}  
   bool operator<( const CInt& rhs ) const   
      {return ( m_nVal < rhs.m_nVal );}  
   friend ostream& operator<<( ostream& osIn, const CInt& rhs );  
  
private:  
   int m_nVal;  
};  
  
inline ostream& operator<<( ostream& osIn, const CInt& rhs )  
{  
   osIn << "CInt( " << rhs.m_nVal << " )";   
   return osIn;  
}  
  
// Return whether modulus of elem1 is less than modulus of elem2  
bool mod_lesser ( int elem1, int elem2 )  
{  
   if ( elem1 < 0 )   
      elem1 = - elem1;  
   if ( elem2 < 0 )   
      elem2 = - elem2;  
   return elem1 < elem2;  
};  
  
int main()  
{  
   // Searching a set container with elements of type CInt   
   // for the minimum element   
   CInt c1 = 1, c2 = 2, c3 = -3;  
   set<CInt> s1;  
   set<CInt>::iterator s1_Iter, s1_R1_Iter, s1_R2_Iter;  
  
   s1.insert ( c1 );  
   s1.insert ( c2 );  
   s1.insert ( c3 );  
  
   cout << "s1 = (";  
   for ( s1_Iter = s1.begin( ); s1_Iter != --s1.end( ); s1_Iter++ )  
      cout << " " << *s1_Iter << ",";  
   s1_Iter = --s1.end( );  
   cout << " " << *s1_Iter << " )." << endl;  
  
   s1_R1_Iter = min_element ( s1.begin ( ) , s1.end ( ) );  
  
   cout << "The smallest element in s1 is: " << *s1_R1_Iter << endl;  
   cout << endl;  
  
   // Searching a vector with elements of type int for the maximum  
   // element under default less than & mod_lesser binary predicates  
   vector <int> v1;  
   vector <int>::iterator v1_Iter, v1_R1_Iter, v1_R2_Iter;  
  
   int i;  
   for ( i = 0 ; i <= 3 ; i++ )  
   {  
      v1.push_back( i );  
   }  
  
   int ii;  
   for ( ii = 1 ; ii <= 4 ; ii++ )  
   {  
      v1.push_back( - 2 * ii );  
   }  
  
   cout << "Vector v1 is ( " ;  
   for ( v1_Iter = v1.begin( ) ; v1_Iter != v1.end( ) ; v1_Iter++ )  
      cout << *v1_Iter << " ";  
   cout << ")." << endl;  
  
   v1_R1_Iter = min_element ( v1.begin ( ) , v1.end ( ) );  
   v1_R2_Iter = min_element ( v1.begin ( ) , v1.end ( ), mod_lesser);  
  
   cout << "The smallest element in v1 is: " << *v1_R1_Iter << endl;  
   cout << "The smallest element in v1 under the mod_lesser"  
        << "\n binary predicate is: " << *v1_R2_Iter << endl;  
}  
s1 = ( CInt
( -3 ), CInt
( 1 ), CInt
( 2 ) ).  
The smallest element in s1 is: CInt
( -3 )  
  
Vector v1 is ( 0 1 2 3 -2 -4 -6 -8 ).  
The smallest element in v1 is: -8  
The smallest element in v1 under the mod_lesser  
 binary predicate is: 0  

minmax_element

Performs the work performed by min_element and max_element in one call.

template<class ForwardIterator>  
    pair< ForwardIterator, ForwardIterator >  
        minmax_element(  
            ForwardIterator  _First,   
            ForwardIterator Last  
                 );  
template<class ForwardIterator, class BinaryPredicate>  
    pair< ForwardIterator, ForwardIterator >  
        minmax_element(  
            ForwardIterator  _First,   
            ForwardIterator Last,   
            BinaryPredicate  _Comp  
                );  

Parameters

_First
A forward iterator that indicates the beginning of a range.

_Last
A forward iterator that indicates the end of a range.

_Comp
An optional test used to order elements.

Return Value

Returns

pair<ForwardIterator, ForwardIterator>

( min_element( _First, _Last), max_element( _First, _Last)).

Remarks

The first template function returns

pair<ForwardIterator,ForwardIterator>

(min_element(_First,Last),max_element(_First,Last)).

The second template function behaves the same, except that it replaces operator<(X, Y) with _Comp``(X, Y).

If the sequence is non-empty, the function performs at most 3 * (``_Last - _First - 1) / 2 comparisons.

minmax

Compares two input parameters and returns them as a pair, in order of lesser to greater.

template<class Type>  
    pair<const Type&, const Type&>  
        minmax(  
            const Type& _Left,   
            const Type& _Right  
        );  
template<class Type, class BinaryPredicate>  
    pair<const Type&, const Type&>  
        minmax(  
            const Type& _Left,  
            const Type& _Right,  
            BinaryPredicate _Comp  
        );  
template<class Type>     pair<Type&, Type&>         minmax(  
            initializer_list<Type> _Ilist  
        );  
template<class Type, class BinaryPredicate>   
    pair<Type&, Type&>         minmax(  
            initializer_list<Type> _Ilist,   
            BinaryPredicate _Comp  
        );  
  

Parameters

_Left
The first of the two objects being compared.

_Right
The second of the two objects being compared.

_Comp
A binary predicate used to compare the two objects.

_IList
The initializer_list that contains the members to be compared.

Remarks

The first template function returns pair<const Type&, const Type&>(``_Right``, _Left``) if _Right is less than _Left. Otherwise, it returns pair<const Type&, const Type&>(``_Left``, _Right``).

The second member function returns a pair where the first element is the lesser and the second is the greater when compared by the predicate _Comp.

The remaining template functions behave the same, except that they replace the _Left and _Right parameters with _IList.

The function performs exactly one comparison.

mismatch

Compares two ranges element by element and locates the first position where a difference occurs.

Use the dual-range overloads in C++14 code because the overloads that only take a single iterator for the second range will not detect differences if the second range is longer than the first range, and will result in undefined behavior if the second range is shorter than the first range.

 template<class InputIterator1, class InputIterator2> pair<InputIterator1, InputIterator2>>   
 mismatch(  
     InputIterator1 First1,  
     InputIterator1 Last1,  
     InputIterator2 First2 );   
  
template<class InputIterator1, class InputIterator2, class BinaryPredicate> pair<InputIterator1, InputIterator2>>  
mismatch(  
     InputIterator1 First1,  
     InputIterator1 Last1,  
     InputIterator2 First2,  
     BinaryPredicate Comp );  
  
//C++14  
template<class InputIterator1, class InputIterator2> pair<InputIterator1, InputIterator2>>  
mismatch(  
    InputIterator1 First1,  
     InputIterator1 Last1,  
     InputIterator2 First2,  
     InputIterator2 Last2 );  
  
template<class InputIterator1, class InputIterator2, class BinaryPredicate> pair<InputIterator1, InputIterator2>>  
mismatch(  
     InputIterator1 First1,  
     InputIterator1 Last1,  
     InputIterator2 First2,  
     InputIterator2 Last2,  
     BinaryPredicate Comp);  

Parameters

First1
An input iterator addressing the position of the first element in the first range to be tested.

Last1
An input iterator addressing the position one past the last element in the first range to be tested.

First2
An input iterator addressing the position of the first element in the second range to be tested.

Last2
An input iterator addressing the position of one past the last element in the second range to be tested.

Comp
User-defined predicate function object that compares the current elements in each range and determines whether they are equivalent. It returns true when satisfied and false when not satisfied.

Return Value

A pair of iterators addressing the positions of the mismatch in the two ranges, the first component iterator to the position in the first range and the second component iterator to the position in the second range. If there is no difference between the elements in the ranges compared or if the binary predicate in the second version is satisfied by all element pairs from the two ranges, then the first component iterator points to the position one past the final element in the first range and the second component iterator to position one past the final element tested in the second range.

Remarks

The first template function assumes that there are as many elements in the range beginning at first2 as there are in the range designated by [first1, last1). If there are more in the second range, they are ignored; if there are less then undefined behavior will result.

The range to be searched must be valid; all iterators must be dereferenceable and the last position is reachable from the first by incrementation.

The time complexity of the algorithm is linear in the number of elements contained in the shorter range.

The user-defined predicate is not required to impose an equivalence relation that symmetric, reflexive and transitive between its operands.

Example

The following example demonstrates how to use mismatch. The C++03 overload is shown only in order to demonstrate how it can produce an unexpected result.

#include <vector>  
#include <list>  
#include <algorithm>  
#include <iostream>  
#include <string>  
#include <utility>  
  
using namespace std;  
  
// Return whether first element is twice the second  
// Note that this is not a symmetric, reflexive and transitive equivalence.  
// mismatch and equal accept such predicates, but is_permutation does not.  
bool twice(int elem1, int elem2)  
{  
    return elem1 == elem2 * 2;  
}  
  
void PrintResult(const string& msg, const pair<vector<int>::iterator, vector<int>::iterator>& result,  
    const vector<int>& left, const vector<int>& right)  
{  
    // If either iterator stops before reaching the end of its container,  
    // it means a mismatch was detected.  
    if (result.first != left.end() || result.second != right.end())  
    {  
        string leftpos(result.first == left.end() ? "end" : to_string(*result.first));  
        string rightpos(result.second == right.end() ? "end" : to_string(*result.second));  
        cout << msg << "mismatch. Left iterator at " << leftpos  
            << " right iterator at " << rightpos << endl;  
    }  
    else  
    {  
        cout << msg << " match." << endl;  
    }  
}  
  
int main()  
{  
  
    vector<int> vec_1{ 0, 5, 10, 15, 20, 25 };  
    vector<int> vec_2{ 0, 5, 10, 15, 20, 25, 30 };  
  
    // Testing different length vectors for mismatch (C++03)  
    auto match_vecs = mismatch(vec_1.begin(), vec_1.end(), vec_2.begin());  
    bool is_mismatch = match_vecs.first != vec_1.end();  
    cout << "C++03: vec_1 and vec_2 are a mismatch: " << boolalpha << is_mismatch << endl;  
  
    // Using dual-range overloads:  
  
    // Testing different length vectors for mismatch (C++14)  
    match_vecs = mismatch(vec_1.begin(), vec_1.end(), vec_2.begin(), vec_2.end());  
    PrintResult("C++14: vec_1 and vec_2: ", match_vecs, vec_1, vec_2);  
  
    // Identify point of mismatch between vec_1 and modified vec_2.   
    vec_2[3] = 42;  
    match_vecs = mismatch(vec_1.begin(), vec_1.end(), vec_2.begin(), vec_2.end());  
    PrintResult("C++14 vec_1 v. vec_2 modified: ", match_vecs, vec_1, vec_2);  
  
    // Test vec_3 and vec_4 for mismatch under the binary predicate twice (C++14)    
    vector<int> vec_3{ 10, 20, 30, 40, 50, 60 };  
    vector<int> vec_4{ 5, 10, 15, 20, 25, 30 };  
    match_vecs = mismatch(vec_3.begin(), vec_3.end(), vec_4.begin(), vec_4.end(), twice);  
    PrintResult("vec_3 v. vec_4 with pred: ", match_vecs, vec_3, vec_4);  
  
    vec_4[5] = 31;  
    match_vecs = mismatch(vec_3.begin(), vec_3.end(), vec_4.begin(), vec_4.end(), twice);  
    PrintResult("vec_3 v. modified vec_4 with pred: ", match_vecs, vec_3, vec_4);  
  
    // Compare a vector<int> to a list<int>  
    list<int> list_1{ 0, 5, 10, 15, 20, 25 };  
    auto match_vec_list = mismatch(vec_1.begin(), vec_1.end(), list_1.begin(), list_1.end());  
    is_mismatch = match_vec_list.first != vec_1.end() || match_vec_list.second != list_1.end();  
    cout << "vec_1 and list_1 are a mismatch: " << boolalpha << is_mismatch << endl;  
  
    char c;  
    cout << "Press a key" << endl;  
    cin >> c;  
  
}  
  
/*  
Output:  
C++03: vec_1 and vec_2 are a mismatch: false  
C++14: vec_1 and vec_2: mismatch. Left iterator at end right iterator at 30  
C++14 vec_1 v. vec_2 modified: mismatch. Left iterator at 15 right iterator at 42  
C++14 vec_3 v. vec_4 with pred:  match.  
C++14 vec_3 v. modified vec_4 with pred: mismatch. Left iterator at 60 right iterator at 31  
C++14: vec_1 and list_1 are a mismatch: false  
Press a key  
*/  
  

<alg> move

Move elements associated with a specified range.

template<class InputIterator, class OutputIterator>  
    OutputIterator move(  
        InputIterator _First,   
        InputIterator _Last,  
        OutputIterator _Dest  
                  );  

Parameters

_First
An input iterator that indicates where to start the range of elements to move.

_Last
An input iterator that indicates the end of a range of elements to move.

_Dest
The output iterator that is to contain the moved elements.

Remarks

The template function evaluates *(``_Dest + N) = move (*(``_First + N))) once for each N in the range [0, _Last - _First``), for strictly increasing values of N starting with the lowest value. It then returns _Dest + N. If _Destand _First designate regions of storage, _Dest must not be in the range [``_First``, _Last``).

move_backward

Moves the elements of one iterator to another. The move starts with the last element in a specified range, and ends with the first element in that range.

template<class BidirectionalIterator1, class BidirectionalIterator2>  
   BidirectionalIterator2 move_backward(  
       BidirectionalIterator1 _First,   
       BidirectionalIterator1 _Last,  
       BidirectionalIterator2 _DestEnd  
   );  

Parameters

_First
An iterator that indicates the start of a range to move elements from.

_Last
An iterator that indicates the end of a range to move elements from. This element is not moved.

_DestEnd
A bidirectional iterator addressing the position of one past the final element in the destination range.

Remarks

The template function evaluates *(``_DestEnd - N - 1) = move``(*(``_Last - N - 1))) once for each N in the range [0, _Last - _First``), for strictly increasing values of N starting with the lowest value. It then returns _DestEnd - (``_Last - _First``). If _DestEnd and _First designate regions of storage, _DestEnd must not be in the range [``_First``, _Last``).

move and move_backward are functionally equivalent to using copy and copy_backward with a move iterator.

next_permutation

Reorders the elements in a range so that the original ordering is replaced by the lexicographically next greater permutation if it exists, where the sense of next may be specified with a binary predicate.

template<class BidirectionalIterator>  
bool next_permutation(BidirectionalIterator _First, BidirectionalIteratorLast);  
  
template<class BidirectionalIterator, class BinaryPredicate>  
bool next_permutation(BidirectionalIterator _First, BidirectionalIteratorLast, BinaryPredicate _Comp);  
  

Parameters

_First
A bidirectional iterator pointing to the position of the first element in the range to be permuted.

_Last
A bidirectional iterator pointing to the position one past the final element in the range to be permuted.

_Comp
User-defined predicate function object that defines the comparison criterion to be satisfied by successive elements in the ordering. A binary predicate takes two arguments and returns true when satisfied and false when not satisfied.

Return Value

true if the lexicographically next permutation exists and has replaced the original ordering of the range; otherwise false, in which case the ordering is transformed into the lexicographically smallest permutation.

Remarks

The range referenced must be valid; all pointers must be dereferenceable and within the sequence the last position is reachable from the first by incrementation.

The default binary predicate is less than and the elements in the range must be less than comparable to insure that the next permutation is well defined.

The complexity is linear with at most ( _Last – _First)/2 swaps.

Example

// alg_next_perm.cpp  
// compile with: /EHsc  
#include <vector>  
#include <deque>  
#include <algorithm>  
#include <iostream>  
#include <ostream>  
  
using namespace std;  
class CInt;  
ostream& operator<<( ostream& osIn, const CInt& rhs );  
  
class CInt  
{  
public:  
   CInt( int n = 0 ) : m_nVal( n ){}  
   CInt( const CInt& rhs ) : m_nVal( rhs.m_nVal ){}  
   CInt&   operator=( const CInt& rhs ) {m_nVal =  
   rhs.m_nVal; return *this;}  
   bool operator<( const CInt& rhs ) const  
      { return ( m_nVal < rhs.m_nVal );}  
   friend   ostream& operator<<( ostream& osIn, const CInt& rhs );  
  
private:  
   int m_nVal;  
};  
  
inline ostream& operator<<( ostream& osIn, const CInt& rhs )  
{  
   osIn << "CInt( " << rhs.m_nVal << " )";  
   return osIn;  
}  
  
// Return whether modulus of elem1 is less than modulus of elem2  
bool mod_lesser ( int elem1, int elem2 )  
{  
   if ( elem1 < 0 )  
      elem1 = - elem1;  
   if ( elem2 < 0 )  
      elem2 = - elem2;  
   return elem1 < elem2;  
};  
  
int main( )  
{  
   // Reordering the elements of type CInt in a deque  
   // using the prev_permutation algorithm  
   CInt c1 = 5, c2 = 1, c3 = 10;  
   bool deq1Result;  
   deque<CInt> deq1, deq2, deq3;  
   deque<CInt>::iterator d1_Iter;  
  
   deq1.push_back ( c1 );  
   deq1.push_back ( c2 );  
   deq1.push_back ( c3 );  
  
   cout << "The original deque of CInts is deq1 = (";  
   for ( d1_Iter = deq1.begin( ); d1_Iter != --deq1.end( ); d1_Iter++ )  
      cout << " " << *d1_Iter << ",";  
   d1_Iter = --deq1.end( );  
   cout << " " << *d1_Iter << " )." << endl;  
  
   deq1Result = next_permutation ( deq1.begin ( ) , deq1.end ( ) );  
  
   if ( deq1Result )  
      cout << "The lexicographically next permutation "  
           << "exists and has\nreplaced the original "  
           << "ordering of the sequence in deq1." << endl;  
   else  
      cout << "The lexicographically next permutation doesn't "  
           << "exist\n and the lexicographically "  
           << "smallest permutation\n has replaced the "  
           << "original ordering of the sequence in deq1." << endl;  
  
   cout << "After one application of next_permutation,\n deq1 = (";  
   for ( d1_Iter = deq1.begin( ); d1_Iter != --deq1.end( ); d1_Iter++ )  
      cout << " " << *d1_Iter << ",";  
   d1_Iter = --deq1.end( );  
   cout << " " << *d1_Iter << " )." << endl << endl;  
  
   // Permuting vector elements with binary function mod_lesser  
   vector <int> v1;  
   vector <int>::iterator Iter1;  
  
   int i;  
   for ( i = -3 ; i <= 3 ; i++ )  
   {  
      v1.push_back( i );  
   }  
  
   cout << "Vector v1 is ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
  
   next_permutation ( v1.begin ( ) , v1.end ( ) , mod_lesser );  
  
   cout << "After the first next_permutation, vector v1 is:\n v1 = ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
  
   int iii = 1;  
   while ( iii <= 5 ) {  
      next_permutation ( v1.begin ( ) , v1.end ( ) , mod_lesser );  
      cout << "After another next_permutation of vector v1,\n v1 =   ( " ;  
      for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ;Iter1 ++ )  
         cout << *Iter1  << " ";  
      cout << ")." << endl;  
      iii++;  
   }  
}  
The original deque of CInts is deq1 = ( CInt( 5 ), CInt( 1 ), CInt( 10 ) ).  
The lexicographically next permutation exists and has  
replaced the original ordering of the sequence in deq1.  
After one application of next_permutation,  
 deq1 = ( CInt( 5 ), CInt( 10 ), CInt( 1 ) ).  
  
Vector v1 is ( -3 -2 -1 0 1 2 3 ).  
After the first next_permutation, vector v1 is:  
 v1 = ( -3 -2 -1 0 1 3 2 ).  
After another next_permutation of vector v1,  
 v1 =   ( -3 -2 -1 0 2 1 3 ).  
After another next_permutation of vector v1,  
 v1 =   ( -3 -2 -1 0 2 3 1 ).  
After another next_permutation of vector v1,  
 v1 =   ( -3 -2 -1 0 3 1 2 ).  
After another next_permutation of vector v1,  
 v1 =   ( -3 -2 -1 0 3 2 1 ).  
After another next_permutation of vector v1,  
 v1 =   ( -3 -2 -1 1 0 2 3 ).  

nth_element

Partitions a range of elements, correctly locating the nth element of the sequence in the range so that all the elements in front of it are less than or equal to it and all the elements that follow it in the sequence are greater than or equal to it.

template<class RandomAccessIterator>  
void nth_element( RandomAccessIterator _First, RandomAccessIterator _Nth, RandomAccessIteratorLast);  
  
 template<class RandomAccessIterator, class BinaryPredicate>  
 void nth_element( RandomAccessIterator _First, RandomAccessIterator _Nth, RandomAccessIteratorLast, BinaryPredicate _Comp);  
  

Parameters

_First
A random-access iterator addressing the position of the first element in the range to be partitioned.

_Nth
A random-access iterator addressing the position of element to be correctly ordered on the boundary of the partition.

_Last
A random-access iterator addressing the position one past the final element in the range to be partitioned.

_Comp
User-defined predicate function object that defines the comparison criterion to be satisfied by successive elements in the ordering. A binary predicate takes two arguments and returns true when satisfied and false when not satisfied.

Remarks

The range referenced must be valid; all pointers must be dereferenceable and within the sequence the last position is reachable from the first by incrementation.

The nth_element algorithm does not guarantee that elements in the sub-ranges either side of the nth element are sorted. It thus makes fewer guarantees than partial_sort, which orders the elements in the range below some chosen element, and may be used as a faster alternative to partial_sort when the ordering of the lower range is not required.

Elements are equivalent, but not necessarily equal, if neither is less than the other.

The average of a sort complexity is linear with respect to _Last – _First.

Example

// alg_nth_elem.cpp  
// compile with: /EHsc  
#include <vector>  
#include <algorithm>  
#include <functional>      // For greater<int>( )  
#include <iostream>  
  
// Return whether first element is greater than the second  
bool UDgreater ( int elem1, int elem2 ) {  
   return elem1 > elem2;  
}  
  
int main() {  
   using namespace std;  
   vector <int> v1;  
   vector <int>::iterator Iter1;  
  
   int i;  
   for ( i = 0 ; i <= 5 ; i++ )  
      v1.push_back( 3 * i );  
  
   int ii;  
   for ( ii = 0 ; ii <= 5 ; ii++ )  
      v1.push_back( 3 * ii + 1 );  
  
   int iii;  
   for ( iii = 0 ; iii <= 5 ; iii++ )  
      v1.push_back( 3 * iii +2 );  
  
   cout << "Original vector:\n v1 = ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")" << endl;  
  
   nth_element(v1.begin( ), v1.begin( ) + 3, v1.end( ) );  
   cout << "Position 3 partitioned vector:\n v1 = ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")" << endl;  
  
   // To sort in descending order, specify binary predicate  
   nth_element( v1.begin( ), v1.begin( ) + 4, v1.end( ),  
          greater<int>( ) );  
   cout << "Position 4 partitioned (greater) vector:\n v1 = ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")" << endl;  
  
   random_shuffle( v1.begin( ), v1.end( ) );  
   cout << "Shuffled vector:\n v1 = ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")" << endl;  
  
   // A user-defined (UD) binary predicate can also be used  
   nth_element( v1.begin( ), v1.begin( ) + 5, v1.end( ), UDgreater );  
   cout << "Position 5 partitioned (UDgreater) vector:\n v1 = ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")" << endl;  
}  

none_of

Returns true when a condition is never present among elements in the given range.

template<class InputIterator, class BinaryPredicate>  
bool none_of(InputIterator _First, InputIterator _Last, BinaryPredicate _Comp);  

Parameters

_First
An input iterator that indicates where to start to check a range of elements for a condition.

_Last
An input iterator that indicates the end of a range of elements.

_Comp
The condition to test for. This is provided by a user-defined predicate function object that defines the condition. A predicate takes a single argument and returns true or false.

Return Value

Returns true if the condition is not detected at least once in the indicated range, and false if the condition is detected.

Remarks

The template function returns true only if, for some N in the range [0, _Last - _First``), the predicate _Comp``(*(``_First + N)) is always false.

partial_sort

Arranges a specified number of the smaller elements in a range into a nondescending order or according to an ordering criterion specified by a binary predicate.

template<class RandomAccessIterator>  
   void partial_sort(  
      RandomAccessIterator first,   
      RandomAccessIterator sortEnd,  
      RandomAccessIterator last  
   );  
template<class RandomAccessIterator, class BinaryPredicate>  
   void partial_sort(  
      RandomAccessIterator first,   
      RandomAccessIterator sortEnd,  
      RandomAccessIterator last  
      BinaryPredicate comp  
   );  

Parameters

first
A random-access iterator addressing the position of the first element in the range to be sorted.

sortEnd
A random-access iterator addressing the position one past the final element in the subrange to be sorted.

last
A random-access iterator addressing the position one past the final element in the range to be partially sorted.

comp
User-defined predicate function object that defines the comparison criterion to be satisfied by successive elements in the ordering. A binary predicate takes two arguments and returns true when satisfied and false when not satisfied.

Remarks

The range referenced must be valid; all pointers must be dereferenceable and within the sequence the last position is reachable from the first by incrementation.

Elements are equivalent, but not necessarily equal, if neither is less than the other. The sort algorithm is not stable and does not guarantee that the relative ordering of equivalent elements will be preserved. The algorithm stable_sort does preserve this original ordering.

The average partial sort complexity is O(( last- first) log ( sortEnd- first)).

Example

// alg_partial_sort.cpp  
// compile with: /EHsc  
#include <vector>  
#include <algorithm>  
#include <functional>      // For greater<int>( )  
#include <iostream>  
  
// Return whether first element is greater than the second  
bool UDgreater ( int elem1, int elem2 )  
{  
   return elem1 > elem2;  
}  
  
int main( )  
{  
   using namespace std;  
   vector <int> v1;  
   vector <int>::iterator Iter1;  
  
   int i;  
   for ( i = 0 ; i <= 5 ; i++ )  
   {  
      v1.push_back( 2 * i );  
   }  
  
   int ii;  
   for ( ii = 0 ; ii <= 5 ; ii++ )  
   {  
      v1.push_back( 2 * ii +1 );  
   }  
  
   cout << "Original vector:\n v1 = ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")" << endl;  
  
   partial_sort(v1.begin( ), v1.begin( ) + 6, v1.end( ) );  
   cout << "Partially sorted vector:\n v1 = ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")" << endl;  
  
   // To partially sort in descending order, specify binary predicate  
   partial_sort(v1.begin( ), v1.begin( ) + 4, v1.end( ), greater<int>( ) );  
   cout << "Partially resorted (greater) vector:\n v1 = ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")" << endl;  
  
   // A user-defined (UD) binary predicate can also be used  
   partial_sort(v1.begin( ), v1.begin( ) + 8, v1.end( ),   
 UDgreater );  
   cout << "Partially resorted (UDgreater) vector:\n v1 = ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")" << endl;  
}  
Original vector:  
 v1 = ( 0 2 4 6 8 10 1 3 5 7 9 11 )  
Partially sorted vector:  
 v1 = ( 0 1 2 3 4 5 10 8 6 7 9 11 )  
Partially resorted (greater) vector:  
 v1 = ( 11 10 9 8 0 1 2 3 4 5 6 7 )  
Partially resorted (UDgreater) vector:  
 v1 = ( 11 10 9 8 7 6 5 4 0 1 2 3 )  

partial_sort_copy

Copies elements from a source range into a destination range where the source elements are ordered by either less than or another specified binary predicate.

 template<class InputIterator, class RandomAccessIterator>  
 RandomAccessIterator partial_sort_copy(  
    InputIterator _First1,  
    InputIterator _Last1,  
    RandomAccessIterator _First2,  
    RandomAccessIteratorLast2 );  
  
template<class InputIterator, class RandomAccessIterator, class BinaryPredicate>  
 RandomAccessIterator partial_sort_copy(  
     InputIterator _First1,  
     InputIterator _Last1,  
     RandomAccessIterator _First2,  
     RandomAccessIteratorLast2,  
     BinaryPredicate _Comp);  
  

Parameters

_First1
An input iterator addressing the position of the first element in the source range.

_Last1
An input iterator addressing the position one past the final element in the source range.

_First2
A random-access iterator addressing the position of the first element in the sorted destination range.

_Last2
A random-access iterator addressing the position one past the final element in the sorted destination range.

_Comp
User-defined predicate function object that defines the condition to be satisfied if two elements are to be taken as equivalent. A binary predicate takes two arguments and returns true when satisfied and false when not satisfied.

Return Value

A random-access iterator addressing the element in the destination range one position beyond the last element inserted from the source range.

Remarks

The source and destination ranges must not overlap and must be valid; all pointers must be dereferenceable and within each sequence the last position must be reachable from the first by incrementation.

The binary predicate must provide a strict weak ordering so that elements that are not equivalent are ordered, but elements that are equivalent are not. Two elements are equivalent under less than, but not necessarily equal, if neither is less than the other.

Example

// alg_partial_sort_copy.cpp  
// compile with: /EHsc  
#include <vector>  
#include <list>  
#include <algorithm>  
#include <functional>  
#include <iostream>  
  
int main() {  
    using namespace std;  
    vector<int> v1, v2;  
    list<int> list1;  
    vector<int>::iterator iter1, iter2;  
    list<int>::iterator list1_Iter, list1_inIter;  
  
    int i;  
    for (i = 0; i <= 9; i++)  
        v1.push_back(i);  
  
    random_shuffle(v1.begin(), v1.end());  
  
    list1.push_back(60);  
    list1.push_back(50);  
    list1.push_back(20);  
    list1.push_back(30);  
    list1.push_back(40);  
    list1.push_back(10);  
  
    cout << "Vector v1 = ( " ;  
    for (iter1 = v1.begin(); iter1 != v1.end(); iter1++)  
        cout << *iter1 << " ";  
    cout << ")" << endl;  
  
    cout << "List list1 = ( " ;  
    for (list1_Iter = list1.begin();  
         list1_Iter!= list1.end();  
         list1_Iter++)  
        cout << *list1_Iter << " ";  
    cout << ")" << endl;  
  
    // Copying a partially sorted copy of list1 into v1  
    vector<int>::iterator result1;  
    result1 = partial_sort_copy(list1.begin(), list1.end(),  
             v1.begin(), v1.begin() + 3);  
  
    cout << "List list1 Vector v1 = ( " ;  
    for (iter1 = v1.begin() ; iter1 != v1.end() ; iter1++)  
        cout << *iter1 << " ";  
    cout << ")" << endl;  
    cout << "The first v1 element one position beyond"  
         << "\n the last L 1 element inserted was " << *result1  
         << "." << endl;  
  
    // Copying a partially sorted copy of list1 into v2  
    int ii;  
    for (ii = 0; ii <= 9; ii++)  
        v2.push_back(ii);  
  
    random_shuffle(v2.begin(), v2.end());  
    vector<int>::iterator result2;  
    result2 = partial_sort_copy(list1.begin(), list1.end(),  
             v2.begin(), v2.begin() + 6);  
  
    cout << "List list1 into Vector v2 = ( " ;  
    for (iter2 = v2.begin() ; iter2 != v2.end(); iter2++)  
        cout << *iter2 << " ";  
    cout << ")" << endl;  
    cout << "The first v2 element one position beyond"  
         << "\n the last L 1 element inserted was " << *result2  
         << "." << endl;  
}  

partition

Classifies elements in a range into two disjoint sets, with those elements satisfying a unary predicate preceding those that fail to satisfy it.

template<class BidirectionalIterator, class Predicate>  
   BidirectionalIterator partition(  
      BidirectionalIterator _First,   
      BidirectionalIterator _Last,   
      Predicate _Comp  
   );  

Parameters

_First
A bidirectional iterator addressing the position of the first element in the range to be partitioned.

_Last
A bidirectional iterator addressing the position one past the final element in the range to be partitioned.

_Comp
User-defined predicate function object that defines the condition to be satisfied if an element is to be classified. A predicate takes a single argument and returns true or false.

Return Value

A bidirectional iterator addressing the position of the first element in the range to not satisfy the predicate condition.

Remarks

The range referenced must be valid; all pointers must be dereferenceable and within the sequence the last position is reachable from the first by incrementation.

Elements a and b are equivalent, but not necessarily equal, if both Pr ( a, b) is false and Pr ( b, a) if false, where Pr is the parameter-specified predicate. The partition algorithm is not stable and does not guarantee that the relative ordering of equivalent elements will be preserved. The algorithm stable_ partition does preserve this original ordering.

The complexity is linear: there are ( _Last_First) applications of _Comp and at most ( _Last_First)/2 swaps.

Example

// alg_partition.cpp  
// compile with: /EHsc  
#include <vector>  
#include <algorithm>  
#include <iostream>  
  
bool greater5 ( int value ) {  
   return value >5;  
}  
  
int main( ) {  
   using namespace std;  
   vector <int> v1, v2;  
   vector <int>::iterator Iter1, Iter2;  
  
   int i;  
   for ( i = 0 ; i <= 10 ; i++ )  
   {  
      v1.push_back( i );  
   }  
   random_shuffle( v1.begin( ), v1.end( ) );  
  
   cout << "Vector v1 is ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
  
   // Partition the range with predicate greater10  
   partition ( v1.begin( ), v1.end( ), greater5 );  
   cout << "The partitioned set of elements in v1 is: ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
}  

partition_copy

Copies elements for which a condition is true to one destination, and for which the condition is false to another. The elements must come from a specified range.

template<class InputIterator, class OutputIterator1, class OutputIterator2, class Predicate>  
    pair<OutputIterator1, OutputIterator2>  
        partition_copy(  
            InputIterator _First,   
            InputIterator _Last,  
            OutputIterator1 _Dest1,   
            OutputIterator2 _Dest2,   
            Predicate _Pred  
        );  

Parameters

_First
An input iterator that indicates the beginning of a range to check for a condition.

_Last
An input iterator that indicates the end of a range.

_Dest1
An output iterator used to copy elements that return true for a condition tested by using _Pred.

_Dest2
An output iterator used to copy elements that return false for a condition tested by using _Pred.

_Pred
The condition to test for. This is provided by a user-defined predicate function object that defines the condition to be tested. A predicate takes a single argument and returns true or false.

Remarks

The template function copies each element X in [``_First``, _Last``) to *``_Dest1``++ if _Pred``(X) is true, or to *``_Dest2``++ if not. It returns pair<OutputIterator1, OutputIterator2>(``_Dest1``, _Dest2``).

partition_point

Returns the first element in the given range that does not satisfy the condition. The elements are sorted so that those that satisfy the condition come before those that do not.

template<class ForwardIterator, class Predicate>  
    ForwardIterator partition_point(  
        ForwardIterator _First,   
        ForwardIterator _Last,  
        Predicate _Comp  
    );  

Parameters

_First
A ForwardIterator that indicates the start of a range to check for a condition.

_Last
A ForwardIterator that indicates the end of a range.

_Comp
The condition to test for. This is provided by a user-defined predicate function object that defines the condition to be satisfied by the element being searched for. A predicate takes a single argument and returns true or false.

Return Value

Returns a ForwardIterator that refers to the first element that does not fulfill the condition tested for by _Comp, or returns _Last if one is not found.

Remarks

The template function finds the first iterator it in [``_First``,``_Last``) for which _Comp(*it) is false. The sequence must be ordered by _Comp.

pop_heap

Removes the largest element from the front of a heap to the next-to-last position in the range and then forms a new heap from the remaining elements.

template<class RandomAccessIterator>  
void pop_heap( RandomAccessIterator _First, RandomAccessIteratorLast);  
  
template<class RandomAccessIterator, class BinaryPredicate>  
void pop_heap(RandomAccessIterator _First, RandomAccessIteratorLast, BinaryPredicate _Comp);  
  

Parameters

_First
A random-access iterator addressing the position of the first element in the heap.

_Last
A random-access iterator addressing the position one past the final element in the heap.

_Comp
User-defined predicate function object that defines sense in which one element is less than another. A binary predicate takes two arguments and returns true when satisfied and false when not satisfied.

Remarks

The pop_heap algorithm is the inverse of the operation performed by the push_heap algorithm, in which an element at the next-to-last position of a range is added to a heap consisting of the prior elements in the range, in the case when the element being added to the heap is larger than any of the elements already in the heap.

Heaps have two properties:

  • The first element is always the largest.

  • Elements may be added or removed in logarithmic time.

Heaps are an ideal way to implement priority queues and they are used in the implementation of the Standard Template Library container adaptor priority_queue Class.

The range referenced must be valid; all pointers must be dereferenceable and within the sequence the last position is reachable from the first by incrementation.

The range excluding the newly added element at the end must be a heap.

The complexity is logarithmic, requiring at most log ( _Last – _First) comparisons.

Example

// alg_pop_heap.cpp  
// compile with: /EHsc  
#include <vector>  
#include <algorithm>  
#include <functional>  
#include <iostream>  
  
int main( )  {  
   using namespace std;  
   vector <int> v1;  
   vector <int>::iterator Iter1, Iter2;  
  
   int i;  
   for ( i = 1 ; i <= 9 ; i++ )  
      v1.push_back( i );  
  
   // Make v1 a heap with default less than ordering  
   random_shuffle( v1.begin( ), v1.end( ) );  
   make_heap ( v1.begin( ), v1.end( ) );  
   cout << "The heaped version of vector v1 is ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
  
   // Add an element to the back of the heap  
   v1.push_back( 10 );  
   push_heap( v1.begin( ), v1.end( ) );  
   cout << "The reheaped v1 with 10 added is ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
  
   // Remove the largest element from the heap  
   pop_heap( v1.begin( ), v1.end( ) );  
   cout << "The heap v1 with 10 removed is ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl << endl;  
  
   // Make v1 a heap with greater-than ordering with a 0 element  
   make_heap ( v1.begin( ), v1.end( ), greater<int>( ) );  
   v1.push_back( 0 );  
   push_heap( v1.begin( ), v1.end( ), greater<int>( ) );  
   cout << "The 'greater than' reheaped v1 puts the smallest "  
        << "element first:\n ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
  
   // Application of pop_heap to remove the smallest element  
   pop_heap( v1.begin( ), v1.end( ), greater<int>( ) );  
   cout << "The 'greater than' heaped v1 with the smallest element\n "  
        << "removed from the heap is: ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
}  

prev_permutation

Reorders the elements in a range so that the original ordering is replaced by the lexicographically previous greater permutation if it exists, where the sense of previous may be specified with a binary predicate.

template<class BidirectionalIterator>  
   bool prev_permutation(  
      BidirectionalIterator _First,   
      BidirectionalIterator _Last  
   );  
template<class BidirectionalIterator, class BinaryPredicate>  
   bool prev_permutation(  
      BidirectionalIterator _First,   
      BidirectionalIterator _Last,  
      BinaryPredicate _Comp  
   );  

Parameters

_First
A bidirectional iterator pointing to the position of the first element in the range to be permuted.

_Last
A bidirectional iterator pointing to the position one past the final element in the range to be permuted.

_Comp
User-defined predicate function object that defines the comparison criterion to be satisfied by successive elements in the ordering. A binary predicate takes two arguments and returns true when satisfied and false when not satisfied.

Return Value

true if the lexicographically previous permutation exists and has replaced the original ordering of the range; otherwise false, in which case the ordering is transformed into the lexicographically largest permutation.

Remarks

The range referenced must be valid; all pointers must be dereferenceable and within the sequence the last position is reachable from the first by incrementation.

The default binary predicate is less than and the elements in the range must be less-than comparable to ensure that the previous permutation is well defined.

The complexity is linear, with at most ( _Last_First)/2 swaps.

Example

// alg_prev_perm.cpp  
// compile with: /EHsc  
#include <vector>  
#include <deque>  
#include <algorithm>  
#include <iostream>  
#include <ostream>  
  
using namespace std;  
class CInt;  
ostream& operator<<( ostream& osIn, const CInt& rhs );  
  
class CInt {  
public:  
   CInt( int n = 0 ) : m_nVal( n ){}  
   CInt( const CInt& rhs ) : m_nVal( rhs.m_nVal ){}  
   CInt&   operator=( const CInt& rhs ) {m_nVal =  
   rhs.m_nVal; return *this;}  
   bool operator<( const CInt& rhs ) const  
      {return ( m_nVal < rhs.m_nVal );}  
   friend ostream& operator<<( ostream& osIn, const CInt& rhs );  
  
private:  
   int m_nVal;  
};  
  
inline ostream& operator<<( ostream& osIn, const CInt& rhs ) {  
   osIn << "CInt( " << rhs.m_nVal << " )";  
   return osIn;  
}  
  
// Return whether modulus of elem1 is less than modulus of elem2  
bool mod_lesser (int elem1, int elem2 ) {  
   if ( elem1 < 0 )  
      elem1 = - elem1;  
   if ( elem2 < 0 )  
      elem2 = - elem2;  
   return elem1 < elem2;  
};  
  
int main() {  
   // Reordering the elements of type CInt in a deque  
   // using the prev_permutation algorithm  
   CInt c1 = 1, c2 = 5, c3 = 10;  
   bool deq1Result;  
   deque<CInt> deq1, deq2, deq3;  
   deque<CInt>::iterator d1_Iter;  
  
   deq1.push_back ( c1 );  
   deq1.push_back ( c2 );  
   deq1.push_back ( c3 );  
  
   cout << "The original deque of CInts is deq1 = (";  
   for ( d1_Iter = deq1.begin( ); d1_Iter != --deq1.end( ); d1_Iter++ )  
      cout << " " << *d1_Iter << ",";  
   d1_Iter = --deq1.end( );  
   cout << " " << *d1_Iter << " )." << endl;  
  
   deq1Result = prev_permutation ( deq1.begin ( ) , deq1.end ( ) );  
  
   if ( deq1Result )  
      cout << "The lexicographically previous permutation "  
           << "exists and has \nreplaced the original "  
           << "ordering of the sequence in deq1." << endl;  
   else  
      cout << "The lexicographically previous permutation doesn't "  
           << "exist\n and the lexicographically "  
           << "smallest permutation\n has replaced the "  
           << "original ordering of the sequence in deq1." << endl;  
  
   cout << "After one application of prev_permutation,\n deq1 = (";  
   for ( d1_Iter = deq1.begin( ); d1_Iter != --deq1.end( ); d1_Iter++ )  
      cout << " " << *d1_Iter << ",";  
   d1_Iter = --deq1.end( );  
   cout << " " << *d1_Iter << " )." << endl << endl;  
  
   // Permutating vector elements with binary function mod_lesser  
   vector <int> v1;  
   vector <int>::iterator Iter1;  
  
   int i;  
   for ( i = -3 ; i <= 3 ; i++ )  
      v1.push_back( i );  
  
   cout << "Vector v1 is ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
  
   prev_permutation ( v1.begin ( ) , v1.end ( ) , mod_lesser );  
  
   cout << "After the first prev_permutation, vector v1 is:\n v1 = ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
  
   int iii = 1;  
   while ( iii <= 5 ) {  
      prev_permutation ( v1.begin ( ) , v1.end ( ) , mod_lesser );  
      cout << "After another prev_permutation of vector v1,\n v1 =   ( " ;  
      for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ;Iter1 ++ )  
         cout << *Iter1  << " ";  
      cout << ")." << endl;  
      iii++;  
   }  
}  
The original deque of CInts is deq1 = ( CInt( 1 ), CInt( 5 ), CInt( 10 ) ).  
The lexicographically previous permutation doesn't exist  
 and the lexicographically smallest permutation  
 has replaced the original ordering of the sequence in deq1.  
After one application of prev_permutation,  
 deq1 = ( CInt( 10 ), CInt( 5 ), CInt( 1 ) ).  
  
Vector v1 is ( -3 -2 -1 0 1 2 3 ).  
After the first prev_permutation, vector v1 is:  
 v1 = ( -3 -2 0 3 2 1 -1 ).  
After another prev_permutation of vector v1,  
 v1 =   ( -3 -2 0 3 -1 2 1 ).  
After another prev_permutation of vector v1,  
 v1 =   ( -3 -2 0 3 -1 1 2 ).  
After another prev_permutation of vector v1,  
 v1 =   ( -3 -2 0 2 3 1 -1 ).  
After another prev_permutation of vector v1,  
 v1 =   ( -3 -2 0 2 -1 3 1 ).  
After another prev_permutation of vector v1,  
 v1 =   ( -3 -2 0 2 -1 1 3 ).  

push_heap

Adds an element that is at the end of a range to an existing heap consisting of the prior elements in the range.

template<class RandomAccessIterator>  
void push_heap( RandomAccessIterator _First, RandomAccessIteratorLast );  
  
template<class RandomAccessIterator, class BinaryPredicate>  
void push_heap( RandomAccessIterator _First, RandomAccessIteratorLast, BinaryPredicate _Comp);  
  

Parameters

_First
A random-access iterator addressing the position of the first element in the heap.

_Last
A random-access iterator addressing the position one past the final element in the range to be converted into a heap.

_Comp
User-defined predicate function object that defines sense in which one element is less than another. A binary predicate takes two arguments and returns true when satisfied and false when not satisfied.

Remarks

The element must first be pushed back to the end of an existing heap and then the algorithm is used to add this element to the existing heap.

Heaps have two properties:

  • The first element is always the largest.

  • Elements may be added or removed in logarithmic time.

Heaps are an ideal way to implement priority queues and they are used in the implementation of the Standard Template Library container adaptor priority_queue Class.

The range referenced must be valid; all pointers must be dereferenceable and within the sequence the last position is reachable from the first by incrementation.

The range excluding the newly added element at the end must be a heap.

The complexity is logarithmic, requiring at most log ( _Last – _First) comparisons.

Example

// alg_push_heap.cpp  
// compile with: /EHsc  
#include <vector>  
#include <algorithm>  
#include <functional>  
#include <iostream>  
  
int main( ) {  
   using namespace std;  
   vector <int> v1, v2;  
   vector <int>::iterator Iter1, Iter2;  
  
   int i;  
   for ( i = 1 ; i <= 9 ; i++ )  
      v1.push_back( i );  
  
   random_shuffle( v1.begin( ), v1.end( ) );  
  
   cout << "Vector v1 is ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
  
   // Make v1 a heap with default less than ordering  
   make_heap ( v1.begin( ), v1.end( ) );  
   cout << "The heaped version of vector v1 is ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
  
   // Add an element to the heap  
   v1.push_back( 10 );  
   cout << "The heap v1 with 10 pushed back is ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
  
   push_heap( v1.begin( ), v1.end( ) );  
   cout << "The reheaped v1 with 10 added is ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl << endl;  
  
   // Make v1 a heap with greater than ordering  
   make_heap ( v1.begin( ), v1.end( ), greater<int>( ) );  
   cout << "The greater-than heaped version of v1 is\n ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
  
   v1.push_back(0);  
   cout << "The greater-than heap v1 with 11 pushed back is\n ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
  
   push_heap( v1.begin( ), v1.end( ), greater<int>( ) );  
   cout << "The greater than reheaped v1 with 11 added is\n ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
}  

random_shuffle

The std::random_shuffle() function is deprecated, replaced by std::shuffle(). For a code example and more information, see <random> and the Stackoverflow posting Why are std::random_shuffle methods being deprecated in C++14?.

remove

Eliminates a specified value from a given range without disturbing the order of the remaining elements and returning the end of a new range free of the specified value.

template<class ForwardIterator, class Type>  
 ForwardIterator remove(ForwardIterator _First, ForwardIteratorLast, const Type& _Val);  
  

Parameters

_First
A forward iterator addressing the position of the first element in the range from which elements are being removed.

_Last
A forward iterator addressing the position one past the final element in the range from which elements are being removed.

_Val
The value that is to be removed from the range.

Return Value

A forward iterator addressing the new end position of the modified range, one past the final element of the remnant sequence free of the specified value.

Remarks

The range referenced must be valid; all pointers must be dereferenceable and within the sequence the last position is reachable from the first by incrementation.

The order of the elements not removed remains stable.

The operator== used to determine the equality between elements must impose an equivalence relation between its operands.

The complexity is linear; there are ( _Last_First) comparisons for equality.

The list class has a more efficient member function version of remove, which also relinks pointers.

Example

// alg_remove.cpp  
// compile with: /EHsc  
#include <vector>  
#include <algorithm>  
#include <iostream>  
  
int main( ) {  
   using namespace std;  
   vector <int> v1;  
   vector <int>::iterator Iter1, Iter2, new_end;  
  
   int i;  
   for ( i = 0 ; i <= 9 ; i++ )  
      v1.push_back( i );  
  
   int ii;  
   for ( ii = 0 ; ii <= 3 ; ii++ )  
      v1.push_back( 7 );  
  
   random_shuffle ( v1.begin( ), v1.end( ) );  
   cout << "Vector v1 is ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
  
   // Remove elements with a value of 7  
   new_end = remove ( v1.begin( ), v1.end( ), 7 );  
  
   cout << "Vector v1 with value 7 removed is ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
  
   // To change the sequence size, use erase  
   v1.erase (new_end, v1.end( ) );  
  
   cout << "Vector v1 resized with value 7 removed is ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
}  

remove_copy

Copies elements from a source range to a destination range, except that elements of a specified value are not copied, without disturbing the order of the remaining elements and returning the end of a new destination range.

template<class InputIterator, class OutputIterator, class Type>  
 OutputIterator remove_copy(InputIterator _First, InputIterator _Last, OutputIterator _Result, const Type& _Val);  
  

Parameters

_First
An input iterator addressing the position of the first element in the range from which elements are being removed.

_Last
An input iterator addressing the position one past the final element in the range from which elements are being removed.

_Result
An output iterator addressing the position of the first element in the destination range to which elements are being removed.

_Val
The value that is to be removed from the range.

Return Value

A forward iterator addressing the new end position of the destination range, one past the final element of the copy of the remnant sequence free of the specified value.

Remarks

The source and destination ranges referenced must be valid; all pointers must be dereferenceable and within the sequence the last position is reachable from the first by incrementation.

There must be enough space in the destination range to contain the remnant elements that will be copied after elements of the specified value are removed.

The order of the elements not removed remains stable.

The operator== used to determine the equality between elements must impose an equivalence relation between its operands.

The complexity is linear; there are ( _Last_First) comparisons for equality and at most ( _Last_First) assignments.

Example

// alg_remove_copy.cpp  
// compile with: /EHsc  
#include <vector>  
#include <algorithm>  
#include <iostream>  
  
int main() {  
   using namespace std;  
   vector <int> v1, v2(10);  
   vector <int>::iterator Iter1, Iter2, new_end;  
  
   int i;  
   for ( i = 0 ; i <= 9 ; i++ )  
      v1.push_back( i );  
  
   int ii;  
   for ( ii = 0 ; ii <= 3 ; ii++ )  
      v1.push_back( 7 );  
  
   random_shuffle (v1.begin( ), v1.end( ) );  
   cout << "The original vector v1 is:     ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
  
   // Remove elements with a value of 7  
   new_end = remove_copy ( v1.begin( ), v1.end( ), v2.begin( ), 7 );  
  
   cout << "Vector v1 is left unchanged as ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
  
   cout << "Vector v2 is a copy of v1 with the value 7 removed:\n ( " ;  
   for ( Iter2 = v2.begin( ) ; Iter2 != v2.end( ) ; Iter2++ )  
      cout << *Iter2 << " ";  
   cout << ")." << endl;  
}  

remove_copy_if

Copies elements from a source range to a destination range, except that satisfying a predicate are not copied, without disturbing the order of the remaining elements and returning the end of a new destination range.

template<class InputIterator, class OutputIterator, class Predicate>  
OutputIterator remove_copy_if(InputIterator _First, InputIterator Last, OutputIterator _Result, Predicate _Pred);  
  

Parameters

_First
An input iterator addressing the position of the first element in the range from which elements are being removed.

_Last
An input iterator addressing the position one past the final element in the range from which elements are being removed.

_Result
An output iterator addressing the position of the first element in the destination range to which elements are being removed.

_Pred
The unary predicate that must be satisfied is the value of an element is to be replaced.

Return Value

A forward iterator addressing the new end position of the destination range, one past the final element of the remnant sequence free of the elements satisfying the predicate.

Remarks

The source range referenced must be valid; all pointers must be dereferenceable and within the sequence the last position is reachable from the first by incrementation.

There must be enough space in the destination range to contain the remnant elements that will be copied after elements of the specified value are removed.

The order of the elements not removed remains stable.

The operator== used to determine the equality between elements must impose an equivalence relation between its operands.

The complexity is linear: there are ( _Last_First) comparisons for equality and at most ( _Last_First) assignments.

For information on how these functions behave, see Checked Iterators.

Example

// alg_remove_copy_if.cpp  
// compile with: /EHsc  
#include <vector>  
#include <algorithm>  
#include <iostream>  
  
bool greater6 ( int value ) {  
   return value >6;  
}  
  
int main() {  
   using namespace std;  
   vector <int> v1, v2(10);  
   vector <int>::iterator Iter1, Iter2, new_end;  
  
   int i;  
   for ( i = 0 ; i <= 9 ; i++ )  
      v1.push_back( i );  
  
   int ii;  
   for ( ii = 0 ; ii <= 3 ; ii++ )  
      v1.push_back( 7 );  
  
   random_shuffle ( v1.begin( ), v1.end( ) );  
   cout << "The original vector v1 is:      ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
  
   // Remove elements with a value greater than 6  
   new_end = remove_copy_if ( v1.begin( ), v1.end( ),   
      v2.begin( ), greater6 );  
  
   cout << "After the appliation of remove_copy_if to v1,\n "  
        << "vector v1 is left unchanged as ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
  
   cout << "Vector v2 is a copy of v1 with values greater "  
        << "than 6 removed:\n ( " ;  
   for ( Iter2 = v2.begin( ) ; Iter2 != new_end ; Iter2++ )  
      cout << *Iter2 << " ";  
   cout << ")." << endl;  
}  

remove_if

Eliminates elements that satisfy a predicate from a given range without disturbing the order of the remaining elements and returning the end of a new range free of the specified value.

template<class ForwardIterator, class Predicate>  
 ForwardIterator remove_if(ForwardIterator _First, ForwardIteratorLast, Predicate _Pred);  
  

Parameters

_First
A forward iterator pointing to the position of the first element in the range from which elements are being removed.

_Last
A forward iterator pointing to the position one past the final element in the range from which elements are being removed.

_Pred
The unary predicate that must be satisfied is the value of an element is to be replaced.

Return Value

A forward iterator addressing the new end position of the modified range, one past the final element of the remnant sequence free of the specified value.

Remarks

The range referenced must be valid; all pointers must be dereferenceable and within the sequence the last position is reachable from the first by incrementation.

The order of the elements not removed remains stable.

The operator== used to determine the equality between elements must impose an equivalence relation between its operands.

The complexity is linear: there are ( _Last_First) comparisons for equality.

List has a more efficient member function version of remove which relinks pointers.

Example

// alg_remove_if.cpp  
// compile with: /EHsc  
#include <vector>  
#include <algorithm>  
#include <iostream>  
  
bool greater6 ( int value ) {  
   return value >6;  
}  
  
int main( ) {  
   using namespace std;  
   vector <int> v1, v2;  
   vector <int>::iterator Iter1, Iter2, new_end;  
  
   int i;  
   for ( i = 0 ; i <= 9 ; i++ )  
      v1.push_back( i );  
  
   int ii;  
   for ( ii = 0 ; ii <= 3 ; ii++ )  
      v1.push_back( 7 );  
  
   random_shuffle ( v1.begin( ), v1.end( ) );  
   cout << "Vector v1 is ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
  
   // Remove elements satisfying predicate greater6  
   new_end = remove_if (v1.begin( ), v1.end( ), greater6 );  
  
   cout << "Vector v1 with elements satisfying greater6 removed is\n ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
  
   // To change the sequence size, use erase  
   v1.erase (new_end, v1.end( ) );  
  
   cout << "Vector v1 resized elements satisfying greater6 removed is\n ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
}  

replace

Examines each element in a range and replaces it if it matches a specified value.

template<class ForwardIterator, class Type>  
void replace(ForwardIterator _First, ForwardIteratorLast, const Type& _OldVal, const Type& _NewVal);  

Parameters

_First
A forward iterator pointing to the position of the first element in the range from which elements are being replaced.

_Last
A forward iterator pointing to the position one past the final element in the range from which elements are being replaced.

_OldVal
The old value of the elements being replaced.

_NewVal
The new value being assigned to the elements with the old value.

Remarks

The range referenced must be valid; all pointers must be dereferenceable and within the sequence the last position is reachable from the first by incrementation.

The order of the elements not replaced remains stable.

The operator== used to determine the equality between elements must impose an equivalence relation between its operands.

The complexity is linear; there are ( _Last_First) comparisons for equality and at most ( _Last_First) assignments of new values.

Example

// alg_replace.cpp  
// compile with: /EHsc  
#include <vector>  
#include <algorithm>  
#include <iostream>  
  
int main( ) {  
   using namespace std;  
   vector <int> v1;  
   vector <int>::iterator Iter1;  
  
   int i;  
   for ( i = 0 ; i <= 9 ; i++ )  
      v1.push_back( i );  
  
   int ii;  
   for ( ii = 0 ; ii <= 3 ; ii++ )  
      v1.push_back( 7 );  
  
   random_shuffle (v1.begin( ), v1.end( ) );  
   cout << "The original vector v1 is:\n ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
  
   // Replace elements with a value of 7 with a value of 700  
   replace (v1.begin( ), v1.end( ), 7 , 700);  
  
   cout << "The vector v1 with a value 700 replacing that of 7 is:\n ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
}  

replace_copy

Examines each element in a source range and replaces it if it matches a specified value while copying the result into a new destination range.

 template<class InputIterator, class OutputIterator, class Type>  
 OutputIterator replace_copy(   
     InputIterator _First,  
     InputIterator _Last,  
     OutputIterator _Result,  
     const Type& _OldVal,  
     const Type& _NewVal);  
  

Parameters

_First
An input iterator pointing to the position of the first element in the range from which elements are being replaced.

_Last
An input iterator pointing to the position one past the final element in the range from which elements are being replaced.

_Result
An output iterator pointing to the first element in the destination range to where the altered sequence of elements is being copied.

_OldVal
The old value of the elements being replaced.

_NewVal
The new value being assigned to the elements with the old value.

Return Value

An output iterator pointing to the position one past the final element in the destination range to where the altered sequence of elements is being copied.

Remarks

The source and destination ranges referenced must not overlap and must both be valid: all pointers must be dereferenceable and within the sequences the last position is reachable from the first by incrementation.

The order of the elements not replaced remains stable.

The operator== used to determine the equality between elements must impose an equivalence relation between its operands.

The complexity is linear: there are ( _Last_First) comparisons for equality and at most ( _Last_First) assignments of new values.

Example

// alg_replace_copy.cpp  
// compile with: /EHsc  
#include <vector>  
#include <list>  
#include <algorithm>  
#include <iostream>  
  
int main( ) {  
   using namespace std;  
   vector <int> v1;  
   list <int> L1 (15);  
   vector <int>::iterator Iter1;  
   list <int>::iterator L_Iter1;  
  
   int i;  
   for ( i = 0 ; i <= 9 ; i++ )  
      v1.push_back( i );  
  
   int ii;  
   for ( ii = 0 ; ii <= 3 ; ii++ )  
      v1.push_back( 7 );  
  
   random_shuffle ( v1.begin( ), v1.end( ) );  
  
   int iii;  
   for ( iii = 0 ; iii <= 15 ; iii++ )  
      v1.push_back( 1 );  
  
   cout << "The original vector v1 is:\n ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
  
   // Replace elements in one part of a vector with a value of 7  
   // with a value of 70 and copy into another part of the vector  
   replace_copy ( v1.begin( ), v1.begin( ) + 14,v1.end( ) -15, 7 , 70);  
  
   cout << "The vector v1 with a value 70 replacing that of 7 is:\n ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
  
   // Replace elements in a vector with a value of 70  
   // with a value of 1 and copy into a list  
   replace_copy ( v1.begin( ), v1.begin( ) + 14,L1.begin( ), 7 , 1);  
  
   cout << "The list copy L1 of v1 with the value 0 replacing "  
        << "that of 7 is:\n ( " ;  
   for ( L_Iter1 = L1.begin( ) ; L_Iter1 != L1.end( ) ; L_Iter1++ )  
      cout << *L_Iter1 << " ";  
   cout << ")." << endl;  
}  

replace_copy_if

Examines each element in a source range and replaces it if it satisfies a specified predicate while copying the result into a new destination range.

template<class InputIterator, class OutputIterator, class Predicate, class Type>  
OutputIterator replace_copy_if(  
    InputIterator _First,  
    InputIterator _Last,  
    OutputIterator _Result,  
    Predicate _Pred,  
    const Type& _Val);  
  

Parameters

_First
An input iterator pointing to the position of the first element in the range from which elements are being replaced.

_Last
An input iterator pointing to the position one past the final element in the range from which elements are being replaced.

_Result
An output iterator pointing to the position of the first element in the destination range to which elements are being copied.

_Pred
The unary predicate that must be satisfied is the value of an element is to be replaced.

_Val
The new value being assigned to the elements whose old value satisfies the predicate.

Return Value

An output iterator pointing to the position one past the final element in the destination range to where the altered sequence of elements is being copied.

Remarks

The source and destination ranges referenced must not overlap and must both be valid: all pointers must be dereferenceable and within the sequences the last position is reachable from the first by incrementation.

The order of the elements not replaced remains stable.

The operator== used to determine the equality between elements must impose an equivalence relation between its operands.

The complexity is linear; there are ( _Last_First) comparisons for equality and at most ( _Last_First) assignments of new values.

Example

// alg_replace_copy_if.cpp  
// compile with: /EHsc  
#include <vector>  
#include <list>  
#include <algorithm>  
#include <iostream>  
  
bool greater6 ( int value ) {  
   return value >6;  
}  
  
int main( ) {  
   using namespace std;  
   vector <int> v1;  
   list <int> L1 (13);  
   vector <int>::iterator Iter1;  
   list <int>::iterator L_Iter1;  
  
   int i;  
   for ( i = 0 ; i <= 9 ; i++ )  
      v1.push_back( i );  
  
   int ii;  
   for ( ii = 0 ; ii <= 3 ; ii++ )  
      v1.push_back( 7 );  
  
   random_shuffle ( v1.begin( ), v1.end( ) );  
  
   int iii;  
   for ( iii = 0 ; iii <= 13 ; iii++ )  
      v1.push_back( 1 );  
  
   cout << "The original vector v1 is:\n ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
  
   // Replace elements with a value of 7 in the 1st half of a vector  
   // with a value of 70 and copy it into the 2nd half of the vector  
   replace_copy_if ( v1.begin( ), v1.begin( ) + 14,v1.end( ) -14,  
      greater6 , 70);  
  
   cout << "The vector v1 with values of 70 replacing those greater"  
        << "\n than 6 in the 1st half & copied into the 2nd half is:\n ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
  
   // Replace elements in a vector with a value of 70  
   // with a value of 1 and copy into a list  
   replace_copy_if ( v1.begin( ), v1.begin( ) + 13,L1.begin( ),  
      greater6 , -1 );  
  
   cout << "A list copy of vector v1 with the value -1\n replacing "  
        << "those greater than 6 is:\n ( " ;  
   for ( L_Iter1 = L1.begin( ) ; L_Iter1 != L1.end( ) ; L_Iter1++ )  
      cout << *L_Iter1 << " ";  
   cout << ")." << endl;  
}  

replace_if

Examines each element in a range and replaces it if it satisfies a specified predicate.

template<class ForwardIterator, class Predicate, class Type>  
void replace_if(ForwardIterator _First, ForwardIteratorLast, Predicate _Pred, const Type& _Val);  
  

Parameters

_First
A forward iterator pointing to the position of the first element in the range from which elements are being replaced.

_Last
An iterator pointing to the position one past the final element in the range from which elements are being replaced.

_Pred
The unary predicate that must be satisfied is the value of an element is to be replaced.

_Val
The new value being assigned to the elements whose old value satisfies the predicate.

Remarks

The range referenced must be valid; all pointers must be dereferenceable and within the sequence the last position is reachable from the first by incrementation.

The order of the elements not replaced remains stable.

The algorithm replace_if is a generalization of the algorithm replace, allowing any predicate to be specified, rather than equality to a specified constant value.

The operator== used to determine the equality between elements must impose an equivalence relation between its operands.

The complexity is linear: there are ( _Last_First) comparisons for equality and at most ( _Last_First) assignments of new values.

Example

// alg_replace_if.cpp  
// compile with: /EHsc  
#include <vector>  
#include <algorithm>  
#include <iostream>  
  
bool greater6 ( int value ) {  
   return value >6;  
}  
  
int main( ) {  
   using namespace std;  
   vector <int> v1;  
   vector <int>::iterator Iter1;  
  
   int i;  
   for ( i = 0 ; i <= 9 ; i++ )  
      v1.push_back( i );  
  
   int ii;  
   for ( ii = 0 ; ii <= 3 ; ii++ )  
      v1.push_back( 7 );  
  
   random_shuffle ( v1.begin( ), v1.end( ) );  
   cout << "The original vector v1 is:\n ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
  
   // Replace elements satisfying the predicate greater6  
   // with a value of 70  
   replace_if ( v1.begin( ), v1.end( ), greater6 , 70);  
  
   cout << "The vector v1 with a value 70 replacing those\n "  
        << "elements satisfying the greater6 predicate is:\n ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
}  

reverse

Reverses the order of the elements within a range.

template<class BidirectionalIterator>  
 void reverse(BidirectionalIterator _First, BidirectionalIteratorLast);  
  

Parameters

_First
A bidirectional iterator pointing to the position of the first element in the range within which the elements are being permuted.

_Last
A bidirectional iterator pointing to the position one past the final element in the range within which the elements are being permuted.

Remarks

The source range referenced must be valid; all pointers must be dereferenceable and within the sequence the last position is reachable from the first by incrementation.

Example

// alg_reverse.cpp  
// compile with: /EHsc  
#include <vector>  
#include <algorithm>  
#include <iostream>  
  
int main( ) {  
   using namespace std;  
   vector <int> v1;  
   vector <int>::iterator Iter1;  
  
   int i;  
   for ( i = 0 ; i <= 9 ; i++ )  
   {  
      v1.push_back( i );  
   }  
  
   cout << "The original vector v1 is:\n ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
  
   // Reverse the elements in the vector   
   reverse (v1.begin( ), v1.end( ) );  
  
   cout << "The modified vector v1 with values reversed is:\n ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
}  
The original vector v1 is:  
 ( 0 1 2 3 4 5 6 7 8 9 ).  
The modified vector v1 with values reversed is:  
 ( 9 8 7 6 5 4 3 2 1 0 ).  

reverse_copy

Reverses the order of the elements within a source range while copying them into a destination range

template<class BidirectionalIterator, class OutputIterator>  
OutputIterator reverse_copy(   
    BidirectionalIterator  _First,  
    BidirectionalIterator Last,  
    OutputIterator  _Result);  
  

Parameters

_First
A bidirectional iterator pointing to the position of the first element in the source range within which the elements are being permuted.

_Last
A bidirectional iterator pointing to the position one past the final element in the source range within which the elements are being permuted.

_Result
An output iterator pointing to the position of the first element in the destination range to which elements are being copied.

Return Value

An output iterator pointing to the position one past the final element in the destination range to where the altered sequence of elements is being copied.

Remarks

The source and destination ranges referenced must be valid; all pointers must be dereferenceable and within the sequence the last position is reachable from the first by incrementation.

Example

// alg_reverse_copy.cpp  
// compile with: /EHsc  
#include <vector>  
#include <algorithm>  
#include <iostream>  
  
int main( ) {  
   using namespace std;  
   vector <int> v1, v2( 10 );  
   vector <int>::iterator Iter1, Iter2;  
  
   int i;  
   for ( i = 0 ; i <= 9 ; i++ )  
   {  
      v1.push_back( i );  
   }  
  
   cout << "The original vector v1 is:\n ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
  
   // Reverse the elements in the vector   
   reverse_copy (v1.begin( ), v1.end( ), v2.begin( ) );  
  
   cout << "The copy v2 of the reversed vector v1 is:\n ( " ;  
   for ( Iter2 = v2.begin( ) ; Iter2 != v2.end( ) ; Iter2++ )  
      cout << *Iter2 << " ";  
   cout << ")." << endl;  
  
   cout << "The original vector v1 remains unmodified as:\n ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
}  

rotate

Exchanges the elements in two adjacent ranges.

template<class ForwardIterator>  
 void rotate(ForwardIterator _First, ForwardIterator _Middle, ForwardIteratorLast);  
  

Parameters

_First
A forward iterator addressing the position of the first element in the range to be rotated.

_Middle
A forward iterator defining the boundary within the range that addresses the position of the first element in the second part of the range whose elements are to be exchanged with those in the first part of the range.

_ Last
A forward iterator addressing the position one past the final element in the range to be rotated.

Remarks

The ranges referenced must be valid; all pointers must be dereferenceable and within the sequence the last position is reachable from the first by incrementation.

The complexity is linear with at most ( _Last_First) swaps.

Example

// alg_rotate.cpp  
// compile with: /EHsc  
#include <vector>  
#include <deque>  
#include <algorithm>  
#include <iostream>  
  
int main( ) {  
   using namespace std;  
   vector <int> v1;  
   deque <int> d1;  
   vector <int>::iterator v1Iter1;  
   deque<int>::iterator d1Iter1;  
  
   int i;  
   for ( i = -3 ; i <= 5 ; i++ )  
   {  
      v1.push_back( i );  
   }  
  
   int ii;  
   for ( ii =0 ; ii <= 5 ; ii++ )  
   {  
      d1.push_back( ii );  
   }  
  
   cout << "Vector v1 is ( " ;  
   for ( v1Iter1 = v1.begin( ) ; v1Iter1 != v1.end( ) ;v1Iter1 ++ )  
      cout << *v1Iter1  << " ";  
   cout << ")." << endl;  
  
   rotate ( v1.begin ( ) , v1.begin ( ) + 3 , v1.end ( ) );  
   cout << "After rotating, vector v1 is ( " ;  
   for ( v1Iter1 = v1.begin( ) ; v1Iter1 != v1.end( ) ;v1Iter1 ++ )  
      cout << *v1Iter1  << " ";  
   cout << ")." << endl;  
  
   cout << "The original deque d1 is ( " ;  
   for ( d1Iter1 = d1.begin( ) ; d1Iter1 != d1.end( ) ;d1Iter1 ++ )  
      cout << *d1Iter1  << " ";  
   cout << ")." << endl;  
  
   int iii = 1;  
   while ( iii <= d1.end ( ) - d1.begin ( ) ) {  
      rotate ( d1.begin ( ) , d1.begin ( ) + 1 , d1.end ( ) );  
      cout << "After the rotation of a single deque element to the back,\n d1 is   ( " ;  
      for ( d1Iter1 = d1.begin( ) ; d1Iter1 != d1.end( ) ;d1Iter1 ++ )  
         cout << *d1Iter1  << " ";  
      cout << ")." << endl;  
      iii++;  
   }  
}  
Vector v1 is ( -3 -2 -1 0 1 2 3 4 5 ).  
After rotating, vector v1 is ( 0 1 2 3 4 5 -3 -2 -1 ).  
The original deque d1 is ( 0 1 2 3 4 5 ).  
After the rotation of a single deque element to the back,  
 d1 is   ( 1 2 3 4 5 0 ).  
After the rotation of a single deque element to the back,  
 d1 is   ( 2 3 4 5 0 1 ).  
After the rotation of a single deque element to the back,  
 d1 is   ( 3 4 5 0 1 2 ).  
After the rotation of a single deque element to the back,  
 d1 is   ( 4 5 0 1 2 3 ).  
After the rotation of a single deque element to the back,  
 d1 is   ( 5 0 1 2 3 4 ).  
After the rotation of a single deque element to the back,  
 d1 is   ( 0 1 2 3 4 5 ).  

rotate_copy

Exchanges the elements in two adjacent ranges within a source range and copies the result to a destination range.

template<class ForwardIterator, class OutputIterator>  
OutputIterator rotate_copy(  
    ForwardIterator _First,  
    ForwardIterator _Middle,  
    ForwardIteratorLast,  
    OutputIterator _Result );  
  

Parameters

_First
A forward iterator addressing the position of the first element in the range to be rotated.

_Middle
A forward iterator defining the boundary within the range that addresses the position of the first element in the second part of the range whose elements are to be exchanged with those in the first part of the range.

_ Last
A forward iterator addressing the position one past the final element in the range to be rotated.

_Result
An output iterator addressing the position of the first element in the destination range.

Return Value

An output iterator addressing the position one past the final element in the destination range.

Remarks

The ranges referenced must be valid; all pointers must be dereferenceable and within the sequence the last position is reachable from the first by incrementation.

The complexity is linear with at most ( _Last_First) swaps.

Example

// alg_rotate_copy.cpp  
// compile with: /EHsc  
#include <vector>  
#include <deque>  
#include <algorithm>  
#include <iostream>  
  
int main() {  
   using namespace std;  
   vector <int> v1 , v2 ( 9 );  
   deque <int> d1 , d2 ( 6 );  
   vector <int>::iterator v1Iter , v2Iter;  
   deque<int>::iterator d1Iter , d2Iter;  
  
   int i;  
   for ( i = -3 ; i <= 5 ; i++ )  
      v1.push_back( i );  
  
   int ii;  
   for ( ii =0 ; ii <= 5 ; ii++ )  
      d1.push_back( ii );  
  
   cout << "Vector v1 is ( " ;  
   for ( v1Iter = v1.begin( ) ; v1Iter != v1.end( ) ;v1Iter ++ )  
      cout << *v1Iter  << " ";  
   cout << ")." << endl;  
  
   rotate_copy ( v1.begin ( ) , v1.begin ( ) + 3 , v1.end ( ) , v2.begin ( ) );  
   cout << "After rotating, the vector v1 remains unchanged as:\n v1 = ( " ;  
   for ( v1Iter = v1.begin( ) ; v1Iter != v1.end( ) ;v1Iter ++ )  
      cout << *v1Iter  << " ";  
   cout << ")." << endl;  
  
   cout << "After rotating, the copy of vector v1 in v2 is:\n v2 = ( " ;  
   for ( v2Iter = v2.begin( ) ; v2Iter != v2.end( ) ;v2Iter ++ )  
      cout << *v2Iter  << " ";  
   cout << ")." << endl;  
  
   cout << "The original deque d1 is ( " ;  
   for ( d1Iter = d1.begin( ) ; d1Iter != d1.end( ) ;d1Iter ++ )  
      cout << *d1Iter  << " ";  
   cout << ")." << endl;  
  
   int iii = 1;  
   while ( iii <= d1.end ( ) - d1.begin ( ) )  
   {  
      rotate_copy ( d1.begin ( ) , d1.begin ( ) + iii , d1.end ( ) , d2.begin ( ) );  
      cout << "After the rotation of a single deque element to the back,\n d2 is   ( " ;  
      for ( d2Iter = d2.begin( ) ; d2Iter != d2.end( ) ;d2Iter ++ )  
         cout << *d2Iter  << " ";  
      cout << ")." << endl;  
      iii++;  
   }  
}  

Searches for the first occurrence of a sequence within a target range whose elements are equal to those in a given sequence of elements or whose elements are equivalent in a sense specified by a binary predicate to the elements in the given sequence.

template<class ForwardIterator1, class ForwardIterator2>  
   ForwardIterator1 search(  
      ForwardIterator1 _First1,   
      ForwardIterator1 _Last1,  
      ForwardIterator2 _First2,   
      ForwardIterator2 _Last2  
   );  
template<class ForwardIterator1, class ForwardIterator2, class Predicate>  
   ForwardIterator1 search(  
      ForwardIterator1 _First1,   
      ForwardIterator1 _Last1,  
      ForwardIterator2 _First2,   
      ForwardIterator2 _Last2  
      Predicate _Comp  
   );  

Parameters

_First1
A forward iterator addressing the position of the first element in the range to be searched.

_Last1
A forward iterator addressing the position one past the final element in the range to be searched.

_First2
A forward iterator addressing the position of the first element in the range to be matched.

_Last2
A forward iterator addressing the position one past the final element in the range to be matched.

_Comp
User-defined predicate function object that defines the condition to be satisfied if two elements are to be taken as equivalent. A binary predicate takes two arguments and returns true when satisfied and false when not satisfied.

Return Value

A forward iterator addressing the position of the first element of the first subsequence that matches the specified sequence or that is equivalent in a sense specified by a binary predicate.

Remarks

The operator== used to determine the match between an element and the specified value must impose an equivalence relation between its operands.

The ranges referenced must be valid; all pointers must be dereferenceable and within each sequence the last position is reachable from the first by incrementation.

Average complexity is linear with respect to the size of the searched range, and worst case complexity is also linear with respect to the size of the sequence being searched for.

Example

// alg_search.cpp  
// compile with: /EHsc  
#include <vector>  
#include <list>  
#include <algorithm>  
#include <iostream>  
  
// Return whether second element is twice the first  
bool twice (int elem1, int elem2 )  
{  
   return 2 * elem1 == elem2;  
}  
  
int main( ) {  
   using namespace std;  
   vector <int> v1, v2;  
   list <int> L1;  
   vector <int>::iterator Iter1, Iter2;  
   list <int>::iterator L1_Iter, L1_inIter;  
  
   int i;  
   for ( i = 0 ; i <= 5 ; i++ )  
   {  
      v1.push_back( 5 * i );  
   }  
   for ( i = 0 ; i <= 5 ; i++ )  
   {  
      v1.push_back( 5 * i );  
   }  
  
   int ii;  
   for ( ii = 4 ; ii <= 5 ; ii++ )  
   {  
      L1.push_back( 5 * ii );  
   }  
  
   int iii;  
   for ( iii = 2 ; iii <= 4 ; iii++ )  
   {  
      v2.push_back( 10 * iii );  
   }  
  
   cout << "Vector v1 = ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")" << endl;  
  
   cout << "List L1 = ( " ;  
   for ( L1_Iter = L1.begin( ) ; L1_Iter!= L1.end( ) ; L1_Iter++ )  
      cout << *L1_Iter << " ";  
   cout << ")" << endl;  
  
   cout << "Vector v2 = ( " ;  
   for ( Iter2 = v2.begin( ) ; Iter2 != v2.end( ) ; Iter2++ )  
      cout << *Iter2 << " ";  
      cout << ")" << endl;  
  
   // Searching v1 for first match to L1 under identity  
   vector <int>::iterator result1;  
   result1 = search (v1.begin( ), v1.end( ), L1.begin( ), L1.end( ) );  
  
   if ( result1 == v1.end( ) )  
      cout << "There is no match of L1 in v1."  
           << endl;  
   else  
      cout << "There is at least one match of L1 in v1"  
           << "\n and the first one begins at "  
           << "position "<< result1 - v1.begin( ) << "." << endl;  
  
   // Searching v1 for a match to L1 under the binary predicate twice  
   vector <int>::iterator result2;  
   result2 = search  (v1.begin( ), v1.end( ), v2.begin( ), v2.end( ), twice );  
  
   if ( result2 == v1.end( ) )  
      cout << "There is no match of L1 in v1."  
           << endl;  
   else  
      cout << "There is a sequence of elements in v1 that "  
           << "are equivalent\n to those in v2 under the binary "  
           << "predicate twice\n and the first one begins at position "  
           << result2 - v1.begin( ) << "." << endl;  
}  
Vector v1 = ( 0 5 10 15 20 25 0 5 10 15 20 25 )  
List L1 = ( 20 25 )  
Vector v2 = ( 20 30 40 )  
There is at least one match of L1 in v1  
 and the first one begins at position 4.  
There is a sequence of elements in v1 that are equivalent  
 to those in v2 under the binary predicate twice  
 and the first one begins at position 2.  

search_n

Searches for the first subsequence in a range that of a specified number of elements having a particular value or a relation to that value as specified by a binary predicate.

template<class ForwardIterator1, class Diff2, class Type>  
   ForwardIterator1 search_n(  
      ForwardIterator1 _First1,   
      ForwardIterator1 _Last1,  
      Diff2 _Count,   
      const Type& _Val  
   );  
template<class ForwardIterator1, class Diff2, class Type, class BinaryPredicate>  
   ForwardIterator1 search_n(  
      ForwardIterator1 _First1,   
      ForwardIterator1 _Last1,  
      Diff2 _Count,   
      const Type& _Val,  
      BinaryPredicate _Comp  
   );  

Parameters

_First1
A forward iterator addressing the position of the first element in the range to be searched.

_Last1
A forward iterator addressing the position one past the final element in the range to be searched.

_Count
The size of the subsequence being searched for.

_Val
The value of the elements in the sequence being searched for.

_Comp
User-defined predicate function object that defines the condition to be satisfied if two elements are to be taken as equivalent. A binary predicate takes two arguments and returns true when satisfied and false when not satisfied.

Return Value

A forward iterator addressing the position of the first element of the first subsequence that matches the specified sequence or that is equivalent in a sense specified by a binary predicate.

Remarks

The operator== used to determine the match between an element and the specified value must impose an equivalence relation between its operands.

The range referenced must be valid; all pointers must be dereferenceable and within the sequence the last position is reachable from the first by incrementation.

Complexity is linear with respect to the size of the searched.

Example

// alg_search_n.cpp  
// compile with: /EHsc  
#include <vector>  
#include <list>  
#include <algorithm>  
#include <iostream>  
  
// Return whether second element is 1/2 of the first  
bool one_half ( int elem1, int elem2 )  
{  
   return elem1 == 2 * elem2;  
}  
  
int main( )   
{  
   using namespace std;  
   vector <int> v1, v2;  
   vector <int>::iterator Iter1;  
  
   int i;  
   for ( i = 0 ; i <= 5 ; i++ )  
   {  
      v1.push_back( 5 * i );  
   }  
  
   for ( i = 0 ; i <= 2 ; i++ )  
   {  
      v1.push_back( 5  );  
   }  
  
   for ( i = 0 ; i <= 5 ; i++ )  
   {  
      v1.push_back( 5 * i );  
   }  
  
   for ( i = 0 ; i <= 2 ; i++ )  
   {  
      v1.push_back( 10  );  
   }  
  
   cout << "Vector v1 = ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")" << endl;  
  
   // Searching v1 for first match to (5 5 5) under identity  
   vector <int>::iterator result1;  
   result1 = search_n ( v1.begin( ), v1.end( ), 3, 5 );  
  
   if ( result1 == v1.end( ) )  
      cout << "There is no match for a sequence ( 5 5 5 ) in v1."  
           << endl;  
   else  
      cout << "There is at least one match of a sequence ( 5 5 5 )"  
           << "\n in v1 and the first one begins at "  
           << "position "<< result1 - v1.begin( ) << "." << endl;  
  
   // Searching v1 for first match to (5 5 5) under one_half  
   vector <int>::iterator result2;  
   result2 = search_n (v1.begin( ), v1.end( ), 3, 5, one_half );  
  
   if ( result2 == v1.end( ) )  
      cout << "There is no match for a sequence ( 5 5 5 ) in v1"  
           << " under the equivalence predicate one_half." << endl;  
   else  
      cout << "There is a match of a sequence ( 5 5 5 ) "  
           << "under the equivalence\n predicate one_half "  
           << "in v1 and the first one begins at "  
           << "position "<< result2 - v1.begin( ) << "." << endl;  
}  
Vector v1 = ( 0 5 10 15 20 25 5 5 5 0 5 10 15 20 25 10 10 10 )  
There is at least one match of a sequence ( 5 5 5 )  
 in v1 and the first one begins at position 6.  
There is a match of a sequence ( 5 5 5 ) under the equivalence  
 predicate one_half in v1 and the first one begins at position 15.  

set_difference

Unites all of the elements that belong to one sorted source range, but not to a second sorted source range, into a single, sorted destination range, where the ordering criterion may be specified by a binary predicate.

 template<class InputIterator1, class InputIterator2, class OutputIterator>  
 OutputIterator set_difference(  
     InputIterator1  first1,  
     InputIterator1  last1,  
     InputIterator2  first2,  
     InputIterator2  last2,  
     OutputIterator  result  );  
  
template<class InputIterator1, class InputIterator2, class OutputIterator, class BinaryPredicate>  
OutputIterator set_difference(  
    InputIterator1  first1,  
    InputIterator1  last1,  
    InputIterator2  first2,  
    InputIterator2  last2,  
    OutputIterator  result,  
    BinaryPredicate  comp  );  
  

Parameters

first1
An input iterator addressing the position of the first element in the first of two sorted source ranges to be united and sorted into a single range representing the difference of the two source ranges.

last1
An input iterator addressing the position one past the last element in the first of two sorted source ranges to be united and sorted into a single range representing the difference of the two source ranges.

first2
An input iterator addressing the position of the first element in second of two consecutive sorted source ranges to be united and sorted into a single range representing the difference of the two source ranges.

last2
An input iterator addressing the position one past the last element in second of two consecutive sorted source ranges to be united and sorted into a single range representing the difference of the two source ranges.

result
An output iterator addressing the position of the first element in the destination range where the two source ranges are to be united into a single sorted range representing the difference of the two source ranges.

comp
User-defined predicate function object that defines the sense in which one element is greater than another. The binary predicate takes two arguments and should return true when the first element is less than the second element and false otherwise.

Return Value

An output iterator addressing the position one past the last element in the sorted destination range representing the difference of the two source ranges.

Remarks

The sorted source ranges referenced must be valid; all pointers must be dereferenceable and within each sequence the last position must be reachable from the first by incrementation.

The destination range should not overlap either of the source ranges and should be large enough to contain the first source range.

The sorted source ranges must each be arranged as a precondition to the application of the set_difference algorithm in accordance with the same ordering as is to be used by the algorithm to sort the combined ranges.

The operation is stable as the relative order of elements within each range is preserved in the destination range. The source ranges are not modified by the algorithm merge.

The value types of the input iterators need be less-than-comparable to be ordered, so that, given two elements, it may be determined either that they are equivalent (in the sense that neither is less than the other) or that one is less than the other. This results in an ordering between the nonequivalent elements. When there are equivalent elements in both source ranges, the elements in the first range precede the elements from the second source range in the destination range. If the source ranges contain duplicates of an element such that there are more in the first source range than in the second, then the destination range will contain the number by which the occurrences of those elements in the first source range exceed the occurrences of those elements in the second source range.

The complexity of the algorithm is linear with at most 2 * ( ( last1 – first1) – ( last2 – first2) ) – 1 comparisons for nonempty source ranges.

Example

// alg_set_diff.cpp  
// compile with: /EHsc  
#include <vector>  
#include <algorithm>  
#include <functional>      // For greater<int>( )  
#include <iostream>  
  
// Return whether modulus of elem1 is less than modulus of elem2  
bool mod_lesser (int elem1, int elem2 )  
{  
   if (elem1 < 0)   
      elem1 = - elem1;  
   if (elem2 < 0)   
      elem2 = - elem2;  
   return elem1 < elem2;  
}  
  
int main( )  
{  
   using namespace std;  
   vector <int> v1a, v1b, v1 ( 12 );  
   vector <int>::iterator Iter1a,  Iter1b, Iter1, Result1;  
  
   // Constructing vectors v1a & v1b with default less-than ordering  
   int i;  
   for ( i = -1 ; i <= 4 ; i++ )  
   {  
      v1a.push_back(  i );  
   }  
  
   int ii;  
   for ( ii =-3 ; ii <= 0 ; ii++ )  
   {  
      v1b.push_back(  ii  );  
   }  
  
   cout << "Original vector v1a with range sorted by the\n "  
        <<  "binary predicate less than is  v1a = ( " ;  
   for ( Iter1a = v1a.begin( ) ; Iter1a != v1a.end( ) ; Iter1a++ )  
      cout << *Iter1a << " ";  
   cout << ")." << endl;  
  
   cout << "Original vector v1b with range sorted by the\n "  
        <<  "binary predicate less than is  v1b = ( " ;  
   for ( Iter1b = v1b.begin ( ) ; Iter1b != v1b.end ( ) ; Iter1b++ )  
      cout << *Iter1b << " ";  
   cout << ")." << endl;  
  
   // Constructing vectors v2a & v2b with ranges sorted by greater  
   vector <int> v2a ( v1a ) , v2b ( v1b ) ,  v2 ( v1 );  
   vector <int>::iterator Iter2a, Iter2b, Iter2, Result2;  
   sort ( v2a.begin ( ) , v2a.end ( ) , greater<int> ( ) );  
   sort ( v2b.begin ( ) , v2b.end ( ) , greater<int> ( ) );  
  
   cout << "Original vector v2a with range sorted by the\n "  
        <<  "binary predicate greater is   v2a =  ( " ;  
   for ( Iter2a = v2a.begin ( ) ; Iter2a != v2a.end ( ) ; Iter2a++ )  
      cout << *Iter2a << " ";  
   cout << ")." << endl;  
  
   cout << "Original vector v2b with range sorted by the\n "  
        <<  "binary predicate greater is   v2b =  ( " ;  
   for ( Iter2b = v2b.begin ( ) ; Iter2b != v2b.end ( ) ; Iter2b++ )  
      cout << *Iter2b << " ";  
   cout << ")." << endl;  
  
   // Constructing vectors v3a & v3b with ranges sorted by mod_lesser  
   vector <int> v3a ( v1a ), v3b ( v1b ) ,  v3 ( v1 );  
   vector <int>::iterator Iter3a,  Iter3b, Iter3, Result3;  
   sort ( v3a.begin ( ) , v3a.end ( ) , mod_lesser );  
   sort ( v3b.begin ( ) , v3b.end ( ) , mod_lesser  );  
  
   cout << "Original vector v3a with range sorted by the\n "  
        <<  "binary predicate mod_lesser is   v3a =  ( " ;  
   for ( Iter3a = v3a.begin ( ) ; Iter3a != v3a.end ( ) ; Iter3a++ )  
      cout << *Iter3a << " ";  
   cout << ")." << endl;  
  
   cout << "Original vector v3b with range sorted by the\n "  
        <<  "binary predicate mod_lesser is   v3b =  ( " ;  
   for ( Iter3b = v3b.begin ( ) ; Iter3b != v3b.end ( ) ; Iter3b++ )  
      cout << *Iter3b << " ";  
   cout << ")." << endl;  
  
   // To combine into a difference in asscending  
   // order with the default binary predicate less <int> ( )  
   Result1 = set_difference ( v1a.begin ( ) , v1a.end ( ) ,  
      v1b.begin ( ) , v1b.end ( ) , v1.begin ( ) );  
   cout << "Set_difference of source ranges with default order,"  
        << "\n vector v1mod =  ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != Result1 ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
  
   // To combine into a difference in descending  
   // order specify binary predicate greater<int>( )  
   Result2 = set_difference ( v2a.begin ( ) , v2a.end ( ) ,  
      v2b.begin ( ) , v2b.end ( ) ,v2.begin ( ) , greater <int> ( ) );  
   cout << "Set_difference of source ranges with binary"  
        << "predicate greater specified,\n vector v2mod  = ( " ;  
   for ( Iter2 = v2.begin( ) ; Iter2 != Result2 ; Iter2++ )  
      cout << *Iter2 << " ";  
   cout << ")." << endl;  
  
   // To combine into a difference applying a user  
   // defined binary predicate mod_lesser  
   Result3 = set_difference (  v3a.begin ( ) , v3a.end ( ) ,  
      v3b.begin ( ) , v3b.end ( ) , v3.begin ( ) , mod_lesser );  
   cout << "Set_difference of source ranges with binary "  
        << "predicate mod_lesser specified,\n vector v3mod  = ( " ; ;  
   for ( Iter3 = v3.begin( ) ; Iter3 != Result3 ; Iter3++ )  
      cout << *Iter3 << " ";  
   cout << ")." << endl;  
}  

set_intersection

Unites all of the elements that belong to both sorted source ranges into a single, sorted destination range, where the ordering criterion may be specified by a binary predicate.

 template<class InputIterator1, class InputIterator2, class OutputIterator>  
 OutputIterator set_intersection(   
      InputIterator1 _First1,  
      InputIterator1Last1,  
      InputIterator2 _First2,  
      InputIterator2Last2,  
      OutputIterator _Result );  
  
template<class InputIterator1, class InputIterator2, class OutputIterator, class BinaryPredicate>  
OutputIterator set_intersection(  
      InputIterator1 _First1,  
      InputIterator1Last1,  
      InputIterator2 _First2,  
      InputIterator2Last2,  
      OutputIterator _Result,  
      BinaryPredicate _Comp );  
  

Parameters

_First1
An input iterator addressing the position of the first element in the first of two sorted source ranges to be united and sorted into a single range representing the intersection of the two source ranges.

_Last1
An input iterator addressing the position one past the last element in the first of two sorted source ranges to be united and sorted into a single range representing the intersection of the two source ranges.

_First2
An input iterator addressing the position of the first element in second of two consecutive sorted source ranges to be united and sorted into a single range representing the intersection of the two source ranges.

_Last2
An input iterator addressing the position one past the last element in second of two consecutive sorted source ranges to be united and sorted into a single range representing the intersection of the two source ranges.

_ Result
An output iterator addressing the position of the first element in the destination range where the two source ranges are to be united into a single sorted range representing the intersection of the two source ranges.

_Comp
User-defined predicate function object that defines the sense in which one element is greater than another. The binary predicate takes two arguments and should return true when the first element is less than the second element and false otherwise.

Return Value

An output iterator addressing the position one past the last element in the sorted destination range representing the intersection of the two source ranges.

Remarks

The sorted source ranges referenced must be valid; all pointers must be dereferenceable and within each sequence the last position must be reachable from the first by incrementation.

The destination range should not overlap either of the source ranges and should be large enough to contain the destination range.

The sorted source ranges must each be arranged as a precondition to the application of the merge algorithm in accordance with the same ordering as is to be used by the algorithm to sort the combined ranges.

The operation is stable as the relative order of elements within each range is preserved in the destination range. The source ranges are not modified by the algorithm.

The value types of the input iterators need be less-than comparable to be ordered, so that, given two elements, it may be determined either that they are equivalent (in the sense that neither is less than the other) or that one is less than the other. This results in an ordering between the nonequivalent elements. When there are equivalent elements in both source ranges, the elements in the first range precede the elements from the second source range in the destination range. If the source ranges contain duplicates of an element, then the destination range will contain the maximum number of those elements that occur in both source ranges.

The complexity of the algorithm is linear with at most 2 * ( ( _Last1 – _First1) + ( _Last2 – _First2) ) – 1 comparisons for nonempty source ranges.

Example

// alg_set_intersection.cpp  
// compile with: /EHsc  
#include <vector>  
#include <algorithm>  
#include <functional>   // For greater<int>( )  
#include <iostream>  
  
// Return whether modulus of elem1 is less than modulus of elem2  
bool mod_lesser (int elem1, int elem2 ) {  
   if ( elem1 < 0 )   
      elem1 = - elem1;  
   if ( elem2 < 0 )   
      elem2 = - elem2;  
   return elem1 < elem2;  
}  
  
int main() {  
   using namespace std;  
   vector <int> v1a, v1b, v1 ( 12 );  
   vector <int>::iterator Iter1a,  Iter1b, Iter1, Result1;  
  
   // Constructing vectors v1a & v1b with default less than ordering  
   int i;  
   for ( i = -1 ; i <= 3 ; i++ )  
      v1a.push_back( i );  
  
   int ii;  
   for ( ii =-3 ; ii <= 1 ; ii++ )  
      v1b.push_back( ii );  
  
   cout << "Original vector v1a with range sorted by the\n "  
        <<  "binary predicate less than is  v1a = ( " ;  
   for ( Iter1a = v1a.begin( ) ; Iter1a != v1a.end( ) ; Iter1a++ )  
      cout << *Iter1a << " ";  
   cout << ")." << endl;  
  
   cout << "Original vector v1b with range sorted by the\n "  
        <<  "binary predicate less than is  v1b = ( " ;  
   for ( Iter1b = v1b.begin ( ) ; Iter1b != v1b.end ( ) ; Iter1b++ )  
      cout << *Iter1b << " ";  
   cout << ")." << endl;  
  
   // Constructing vectors v2a & v2b with ranges sorted by greater  
   vector <int> v2a ( v1a ) , v2b ( v1b ) , v2 ( v1 );  
   vector <int>::iterator Iter2a, Iter2b, Iter2, Result2;  
   sort ( v2a.begin ( ) , v2a.end ( ) , greater<int> ( ) );  
   sort ( v2b.begin ( ) , v2b.end ( ) , greater<int> ( ) );  
  
   cout << "Original vector v2a with range sorted by the\n "  
        << "binary predicate greater is   v2a =  ( " ;  
   for ( Iter2a = v2a.begin ( ) ; Iter2a != v2a.end ( ) ; Iter2a++ )  
      cout << *Iter2a << " ";  
   cout << ")." << endl;  
  
   cout << "Original vector v2b with range sorted by the\n "  
        << "binary predicate greater is   v2b =  ( " ;  
   for ( Iter2b = v2b.begin ( ) ; Iter2b != v2b.end ( ) ; Iter2b++ )  
      cout << *Iter2b << " ";  
   cout << ")." << endl;  
  
   // Constructing vectors v3a & v3b with ranges sorted by mod_lesser  
   vector <int> v3a ( v1a ), v3b ( v1b ) , v3 ( v1 );  
   vector <int>::iterator Iter3a,  Iter3b, Iter3, Result3;  
   sort ( v3a.begin ( ) , v3a.end ( ) , mod_lesser );  
   sort ( v3b.begin ( ) , v3b.end ( ) , mod_lesser );  
  
   cout << "Original vector v3a with range sorted by the\n "  
        <<  "binary predicate mod_lesser is   v3a =  ( " ;  
   for ( Iter3a = v3a.begin ( ) ; Iter3a != v3a.end ( ) ; Iter3a++ )  
      cout << *Iter3a << " ";  
   cout << ")." << endl;  
  
   cout << "Original vector v3b with range sorted by the\n "  
           <<  "binary predicate mod_lesser is   v3b =  ( " ;  
   for ( Iter3b = v3b.begin ( ) ; Iter3b != v3b.end ( ) ; Iter3b++ )  
      cout << *Iter3b << " ";  
   cout << ")." << endl;  
  
   // To combine into an intersection in asscending order with the  
   // default binary predicate less <int> ( )  
   Result1 = set_intersection ( v1a.begin ( ) , v1a.end ( ) ,  
      v1b.begin ( ) , v1b.end ( ) , v1.begin ( ) );  
   cout << "Intersection of source ranges with default order,"  
        << "\n vector v1mod =  ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != Result1 ; ++Iter1 )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
  
   // To combine into an intersection in descending order, specify  
   // binary predicate greater<int>( )  
   Result2 = set_intersection ( v2a.begin ( ) , v2a.end ( ) ,  
      v2b.begin ( ) , v2b.end ( ) ,v2.begin ( ) , greater <int> ( ) );  
   cout << "Intersection of source ranges with binary predicate"  
        << " greater specified,\n vector v2mod  = ( " ;  
   for ( Iter2 = v2.begin( ) ; Iter2 != Result2 ; ++Iter2 )  
      cout << *Iter2 << " ";  
   cout << ")." << endl;  
  
   // To combine into an intersection applying a user-defined  
   // binary predicate mod_lesser  
   Result3 = set_intersection ( v3a.begin ( ) , v3a.end ( ) ,  
      v3b.begin ( ) , v3b.end ( ) , v3.begin ( ) , mod_lesser );  
   cout << "Intersection of source ranges with binary predicate "  
        << "mod_lesser specified,\n vector v3mod  = ( " ; ;  
   for ( Iter3 = v3.begin( ) ; Iter3 != Result3 ; ++Iter3 )  
      cout << *Iter3 << " ";  
   cout << ")." << endl;  
}  

set_symmetric_difference

Unites all of the elements that belong to one, but not both, of the sorted source ranges into a single, sorted destination range, where the ordering criterion may be specified by a binary predicate.

template<class InputIterator1, class InputIterator2, class OutputIterator>  
 OutputIterator set_symmetric_difference(  
    InputIterator1 _First1,  
    InputIterator1Last1,  
    InputIterator2 _First2,  
    InputIterator2Last2,  
    OutputIterator _Result );  
  
template<class InputIterator1, class InputIterator2, class OutputIterator, class BinaryPredicate>  
OutputIterator set_symmetric_difference(  
    InputIterator1 _First1,  
    InputIterator1Last1,  
    InputIterator2 _First2,  
    InputIterator2Last2,  
    OutputIterator _Result,  
    BinaryPredicate _Comp );  
  

Parameters

_First1
An input iterator addressing the position of the first element in the first of two sorted source ranges to be united and sorted into a single range representing the symmetric difference of the two source ranges.

_Last1
An input iterator addressing the position one past the last element in the first of two sorted source ranges to be united and sorted into a single range representing the symmetric difference of the two source ranges.

_First2
An input iterator addressing the position of the first element in second of two consecutive sorted source ranges to be united and sorted into a single range representing the symmetric difference of the two source ranges.

_Last2
An input iterator addressing the position one past the last element in second of two consecutive sorted source ranges to be united and sorted into a single range representing the symmetric difference of the two source ranges.

_ Result
An output iterator addressing the position of the first element in the destination range where the two source ranges are to be united into a single sorted range representing the symmetric difference of the two source ranges.

_Comp
User-defined predicate function object that defines the sense in which one element is greater than another. The binary predicate takes two arguments and should return true when the first element is less than the second element and false otherwise.

Return Value

An output iterator addressing the position one past the last element in the sorted destination range representing the symmetric difference of the two source ranges.

Remarks

The sorted source ranges referenced must be valid; all pointers must be dereferenceable and within each sequence the last position must be reachable from the first by incrementation.

The destination range should not overlap either of the source ranges and should be large enough to contain the destination range.

The sorted source ranges must each be arranged as a precondition to the application of the merge algorithm in accordance with the same ordering as is to be used by the algorithm to sort the combined ranges.

The operation is stable as the relative order of elements within each range is preserved in the destination range. The source ranges are not modified by the algorithm merge.

The value types of the input iterators need be less-than comparable to be ordered, so that, given two elements, it may be determined either that they are equivalent (in the sense that neither is less than the other) or that one is less than the other. This results in an ordering between the nonequivalent elements. When there are equivalent elements in both source ranges, the elements in the first range precede the elements from the second source range in the destination range. If the source ranges contain duplicates of an element, then the destination range will contain the absolute value of the number by which the occurrences of those elements in the one of the source ranges exceeds the occurrences of those elements in the second source range.

The complexity of the algorithm is linear with at most 2 * ( ( _Last1 – _First1) – ( _Last2 – _First2) ) – 1 comparisons for nonempty source ranges.

Example

// alg_set_sym_diff.cpp  
// compile with: /EHsc  
#include <vector>  
#include <algorithm>  
#include <functional>      // For greater<int>( )  
#include <iostream>  
  
// Return whether modulus of elem1 is less than modulus of elem2  
bool mod_lesser (int elem1, int elem2 )  
{  
   if ( elem1 < 0 )   
      elem1 = - elem1;  
   if ( elem2 < 0 )   
      elem2 = - elem2;  
   return elem1 < elem2;  
}  
  
int main( )  
{  
   using namespace std;  
   vector <int> v1a, v1b, v1 ( 12 );  
   vector <int>::iterator Iter1a,  Iter1b, Iter1, Result1;  
  
   // Constructing vectors v1a & v1b with default less-than ordering  
   int i;  
   for ( i = -1 ; i <= 4 ; i++ )  
   {  
      v1a.push_back(  i );  
   }  
  
   int ii;  
   for ( ii =-3 ; ii <= 0 ; ii++ )  
   {  
      v1b.push_back(  ii  );  
   }  
  
   cout << "Original vector v1a with range sorted by the\n "  
        <<  "binary predicate less than is  v1a = ( " ;  
   for ( Iter1a = v1a.begin( ) ; Iter1a != v1a.end( ) ; Iter1a++ )  
      cout << *Iter1a << " ";  
   cout << ")." << endl;  
  
   cout << "Original vector v1b with range sorted by the\n "  
        <<  "binary predicate less than is  v1b = ( " ;  
   for ( Iter1b = v1b.begin ( ) ; Iter1b != v1b.end ( ) ; Iter1b++ )  
      cout << *Iter1b << " ";  
   cout << ")." << endl;  
  
   // Constructing vectors v2a & v2b with ranges sorted by greater  
   vector <int> v2a ( v1a ) , v2b ( v1b ) ,  v2 ( v1 );  
   vector <int>::iterator Iter2a, Iter2b, Iter2, Result2;  
   sort ( v2a.begin ( ) , v2a.end ( ) , greater<int> ( ) );  
   sort ( v2b.begin ( ) , v2b.end ( ) , greater<int> ( ) );  
  
   cout << "Original vector v2a with range sorted by the\n "  
        <<  "binary predicate greater is   v2a =  ( " ;  
   for ( Iter2a = v2a.begin ( ) ; Iter2a != v2a.end ( ) ; Iter2a++ )  
      cout << *Iter2a << " ";  
   cout << ")." << endl;  
  
   cout << "Original vector v2b with range sorted by the\n "  
        <<  "binary predicate greater is   v2b =  ( " ;  
   for ( Iter2b = v2b.begin ( ) ; Iter2b != v2b.end ( ) ; Iter2b++ )  
      cout << *Iter2b << " ";  
   cout << ")." << endl;  
  
   // Constructing vectors v3a & v3b with ranges sorted by mod_lesser  
   vector <int> v3a ( v1a ), v3b ( v1b ) ,  v3 ( v1 );  
   vector <int>::iterator Iter3a, Iter3b, Iter3, Result3;  
   sort ( v3a.begin ( ) , v3a.end ( ) , mod_lesser );  
   sort ( v3b.begin ( ) , v3b.end ( ) , mod_lesser  );  
  
   cout << "Original vector v3a with range sorted by the\n "  
        <<  "binary predicate mod_lesser is   v3a =  ( " ;  
   for ( Iter3a = v3a.begin ( ) ; Iter3a != v3a.end ( ) ; Iter3a++ )  
      cout << *Iter3a << " ";  
   cout << ")." << endl;  
  
   cout << "Original vector v3b with range sorted by the\n "  
        <<  "binary predicate mod_lesser is   v3b =  ( " ;  
   for ( Iter3b = v3b.begin ( ) ; Iter3b != v3b.end ( ) ; Iter3b++ )  
      cout << *Iter3b << " ";  
   cout << ")." << endl;  
  
   // To combine into a symmetric difference in ascending  
   // order with the default binary predicate less <int> ( )  
   Result1 = set_symmetric_difference ( v1a.begin ( ) , v1a.end ( ) ,  
      v1b.begin ( ) , v1b.end ( ) , v1.begin ( ) );  
   cout << "Set_symmetric_difference of source ranges with default order,"  
        << "\n vector v1mod =  ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != Result1 ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
  
   // To combine into a symmetric difference in descending  
   // order, specify binary predicate greater<int>( )  
   Result2 = set_symmetric_difference ( v2a.begin ( ) , v2a.end ( ) ,  
      v2b.begin ( ) , v2b.end ( ) ,v2.begin ( ) , greater <int> ( ) );  
   cout << "Set_symmetric_difference of source ranges with binary"  
        << "predicate greater specified,\n vector v2mod  = ( " ;  
   for ( Iter2 = v2.begin( ) ; Iter2 != Result2 ; Iter2++ )  
      cout << *Iter2 << " ";  
   cout << ")." << endl;  
  
   // To combine into a symmetric difference applying a user  
   // defined binary predicate mod_lesser  
   Result3 = set_symmetric_difference ( v3a.begin ( ) , v3a.end ( ) ,  
      v3b.begin ( ) , v3b.end ( ) , v3.begin ( ) , mod_lesser );  
   cout << "Set_symmetric_difference of source ranges with binary "  
        << "predicate mod_lesser specified,\n vector v3mod  = ( " ; ;  
   for ( Iter3 = v3.begin( ) ; Iter3 != Result3 ; Iter3++ )  
      cout << *Iter3 << " ";  
   cout << ")." << endl;  
}  

set_union

Unites all of the elements that belong to at least one of two sorted source ranges into a single, sorted destination range, where the ordering criterion may be specified by a binary predicate.

 template<class InputIterator1, class InputIterator2, class OutputIterator>  
 OutputIterator set_union(  
    InputIterator1 _First1,  
    InputIterator1Last1,  
    InputIterator2 _First2,  
    InputIterator2Last2,  
    OutputIterator _Result );   
  
template<class InputIterator1, class InputIterator2, class OutputIterator, class BinaryPredicate>  
OutputIterator set_union(  
    InputIterator1 _First1,  
    InputIterator1Last1,  
    InputIterator2 _First2,  
    InputIterator2Last2,  
    OutputIterator _Result,  
    BinaryPredicate _Comp );  

Parameters

_First1
An input iterator addressing the position of the first element in the first of two sorted source ranges to be united and sorted into a single range representing the union of the two source ranges.

_Last1
An input iterator addressing the position one past the last element in the first of two sorted source ranges to be united and sorted into a single range representing the union of the two source ranges.

_First2
An input iterator addressing the position of the first element in second of two consecutive sorted source ranges to be united and sorted into a single range representing the union of the two source ranges.

_Last2
An input iterator addressing the position one past the last element in second of two consecutive sorted source ranges to be united and sorted into a single range representing the union of the two source ranges.

_ Result
An output iterator addressing the position of the first element in the destination range where the two source ranges are to be united into a single sorted range representing the union of the two source ranges.

_Comp
User-defined predicate function object that defines the sense in which one element is greater than another. The binary predicate takes two arguments and should return true when the first element is less than the second element and false otherwise.

Return Value

An output iterator addressing the position one past the last element in the sorted destination range representing the union of the two source ranges.

Remarks

The sorted source ranges referenced must be valid; all pointers must be dereferenceable and within each sequence the last position must be reachable from the first by incrementation.

The destination range should not overlap either of the source ranges and should be large enough to contain the destination range.

The sorted source ranges must each be arranged as a precondition to the application of the merge algorithm in accordance with the same ordering as is to be used by the algorithm to sort the combined ranges.

The operation is stable as the relative order of elements within each range is preserved in the destination range. The source ranges are not modified by the algorithm merge.

The value types of the input iterators need be less-than comparable to be ordered, so that, given two elements, it may be determined either that they are equivalent (in the sense that neither is less than the other) or that one is less than the other. This results in an ordering between the nonequivalent elements. When there are equivalent elements in both source ranges, the elements in the first range precede the elements from the second source range in the destination range. If the source ranges contain duplicates of an element, then the destination range will contain the maximum number of those elements that occur in both source ranges.

The complexity of the algorithm is linear with at most 2 * ( ( _Last1 – _First1) – ( _Last2 – _First2) ) – 1 comparisons.

Example

// alg_set_union.cpp  
// compile with: /EHsc  
#include <vector>  
#include <algorithm>  
#include <functional>      // For greater<int>( )  
#include <iostream>  
  
// Return whether modulus of elem1 is less than modulus of elem2  
bool mod_lesser ( int elem1, int elem2 )  
{  
   if ( elem1 < 0 )   
      elem1 = - elem1;  
   if ( elem2 < 0 )   
      elem2 = - elem2;  
   return elem1 < elem2;  
}  
  
int main( )  
{  
   using namespace std;  
   vector <int> v1a, v1b, v1 ( 12 );  
   vector <int>::iterator Iter1a, Iter1b, Iter1, Result1;  
  
   // Constructing vectors v1a & v1b with default less than ordering  
   int i;  
   for ( i = -1 ; i <= 3 ; i++ )  
   {  
      v1a.push_back(  i );  
   }  
  
   int ii;  
   for ( ii =-3 ; ii <= 1 ; ii++ )  
   {  
      v1b.push_back(  ii  );  
   }  
  
   cout << "Original vector v1a with range sorted by the\n "  
        <<  "binary predicate less than is  v1a = ( " ;  
   for ( Iter1a = v1a.begin( ) ; Iter1a != v1a.end( ) ; Iter1a++ )  
      cout << *Iter1a << " ";  
   cout << ")." << endl;  
  
   cout << "Original vector v1b with range sorted by the\n "  
        <<  "binary predicate less than is  v1b = ( " ;  
   for ( Iter1b = v1b.begin ( ) ; Iter1b != v1b.end ( ) ; Iter1b++ )  
      cout << *Iter1b << " ";  
   cout << ")." << endl;  
  
   // Constructing vectors v2a & v2b with ranges sorted by greater  
   vector <int> v2a ( v1a ) , v2b ( v1b ) , v2 ( v1 );  
   vector <int>::iterator Iter2a,  Iter2b, Iter2, Result2;  
   sort ( v2a.begin ( ) , v2a.end ( ) , greater<int> ( ) );  
   sort ( v2b.begin ( ) , v2b.end ( ) , greater<int> ( ) );  
  
   cout << "Original vector v2a with range sorted by the\n "  
        <<  "binary predicate greater is   v2a =  ( " ;  
   for ( Iter2a = v2a.begin ( ) ; Iter2a != v2a.end ( ) ; Iter2a++ )  
      cout << *Iter2a << " ";  
   cout << ")." << endl;  
  
   cout << "Original vector v2b with range sorted by the\n "  
        <<  "binary predicate greater is   v2b =  ( " ;  
   for ( Iter2b = v2b.begin ( ) ; Iter2b != v2b.end ( ) ; Iter2b++ )  
      cout << *Iter2b << " ";  
   cout << ")." << endl;  
  
   // Constructing vectors v3a & v3b with ranges sorted by mod_lesser  
   vector <int> v3a ( v1a ), v3b ( v1b ) ,  v3 ( v1 );  
   vector <int>::iterator Iter3a, Iter3b, Iter3, Result3;  
   sort ( v3a.begin ( ) , v3a.end ( ) , mod_lesser );  
   sort ( v3b.begin ( ) , v3b.end ( ) , mod_lesser  );  
  
   cout << "Original vector v3a with range sorted by the\n "  
        <<  "binary predicate mod_lesser is   v3a =  ( " ;  
   for ( Iter3a = v3a.begin ( ) ; Iter3a != v3a.end ( ) ; Iter3a++ )  
      cout << *Iter3a << " ";  
   cout << ")." << endl;  
  
   cout << "Original vector v3b with range sorted by the\n "  
        <<  "binary predicate mod_lesser is   v3b =  ( " ;  
   for ( Iter3b = v3b.begin ( ) ; Iter3b != v3b.end ( ) ; Iter3b++ )  
      cout << *Iter3b << " ";  
   cout << ")." << endl;  
  
   // To combine into a union in ascending order with the default   
    // binary predicate less <int> ( )  
   Result1 = set_union ( v1a.begin ( ) , v1a.end ( ) ,  
      v1b.begin ( ) , v1b.end ( ) , v1.begin ( ) );  
   cout << "Union of source ranges with default order,"  
        << "\n vector v1mod =  ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != Result1 ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
  
   // To combine into a union in descending order, specify binary   
   // predicate greater<int>( )  
   Result2 = set_union (  v2a.begin ( ) , v2a.end ( ) ,  
      v2b.begin ( ) , v2b.end ( ) ,v2.begin ( ) , greater <int> ( ) );  
   cout << "Union of source ranges with binary predicate greater "  
        << "specified,\n vector v2mod  = ( " ;  
   for ( Iter2 = v2.begin( ) ; Iter2 != Result2 ; Iter2++ )  
      cout << *Iter2 << " ";  
   cout << ")." << endl;  
  
   // To combine into a union applying a user-defined  
   // binary predicate mod_lesser  
   Result3 = set_union ( v3a.begin ( ) , v3a.end ( ) ,  
      v3b.begin ( ) , v3b.end ( ) , v3.begin ( ) , mod_lesser );  
   cout << "Union of source ranges with binary predicate "  
        << "mod_lesser specified,\n vector v3mod  = ( " ; ;  
   for ( Iter3 = v3.begin( ) ; Iter3 != Result3 ; Iter3++ )  
      cout << *Iter3 << " ";  
   cout << ")." << endl;  
}  

std::shuffle

Shuffles (rearranges) elements for a given range by using a random number generator.

template<class RandomAccessIterator, class UniformRandomNumberGenerator>  
void shuffle(RandomAccessIterator first,  
    RandomAccessIterator last,  
    UniformRandomNumberGenerator&& gen);  

Parameters

first
An iterator to the first element in the range to be shuffled, inclusive. Must meet the requirements of RandomAccessIterator and ValueSwappable.

last
An iterator to the last element in the range to be shuffled, exclusive. Must meet the requirements of RandomAccessIterator and ValueSwappable.

gen
The random number generator that the shuffle() function will use for the operation. Must meet the requirements of a UniformRandomNumberGenerator.

Remarks

For more information, and a code sample that uses shuffle(), see <random>.

sort

Arranges the elements in a specified range into a nondescending order or according to an ordering criterion specified by a binary predicate.

template<class RandomAccessIterator>  
   void sort(  
      RandomAccessIterator first,   
      RandomAccessIterator last  
   );  
template<class RandomAccessIterator, class Predicate>  
   void sort(  
      RandomAccessIterator first,   
      RandomAccessIterator last,   
      Predicate comp  
   );  

Parameters

first
A random-access iterator addressing the position of the first element in the range to be sorted.

last
A random-access iterator addressing the position one past the final element in the range to be sorted.

comp
User-defined predicate function object that defines the comparison criterion to be satisfied by successive elements in the ordering. This binary predicate takes two arguments and returns true if the two arguments are in order and false otherwise. This comparator function must impose a strict weak ordering on pairs of elements from the sequence. For more information, see Algorithms.

Remarks

The range referenced must be valid; all pointers must be dereferenceable and within the sequence the last position is reachable from the first by incrementation.

Elements are equivalent, but not necessarily equal, if neither is less than the other. The sort algorithm is not stable and so does not guarantee that the relative ordering of equivalent elements will be preserved. The algorithm stable_sort does preserve this original ordering.

The average of a sort complexity is O( N log N), where N = last – first.

Example

// alg_sort.cpp  
// compile with: /EHsc  
#include <vector>  
#include <algorithm>  
#include <functional>      // For greater<int>( )  
#include <iostream>  
  
// Return whether first element is greater than the second  
bool UDgreater ( int elem1, int elem2 )  
{  
   return elem1 > elem2;  
}  
  
int main( )  
{  
   using namespace std;  
   vector <int> v1;  
   vector <int>::iterator Iter1;  
  
   int i;  
   for ( i = 0 ; i <= 5 ; i++ )  
   {  
      v1.push_back( 2 * i );  
   }  
  
   int ii;  
   for ( ii = 0 ; ii <= 5 ; ii++ )  
   {  
      v1.push_back( 2 * ii + 1 );  
   }  
  
   cout << "Original vector v1 = ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")" << endl;  
  
   sort( v1.begin( ), v1.end( ) );  
   cout << "Sorted vector v1 = ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")" << endl;  
  
   // To sort in descending order. specify binary predicate  
   sort( v1.begin( ), v1.end( ), greater<int>( ) );  
   cout << "Resorted (greater) vector v1 = ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")" << endl;  
  
   // A user-defined (UD) binary predicate can also be used  
   sort( v1.begin( ), v1.end( ), UDgreater );  
   cout << "Resorted (UDgreater) vector v1 = ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")" << endl;  
}  
Original vector v1 = ( 0 2 4 6 8 10 1 3 5 7 9 11 )  
Sorted vector v1 = ( 0 1 2 3 4 5 6 7 8 9 10 11 )  
Resorted (greater) vector v1 = ( 11 10 9 8 7 6 5 4 3 2 1 0 )  
Resorted (UDgreater) vector v1 = ( 11 10 9 8 7 6 5 4 3 2 1 0 )  

sort_heap

Converts a heap into a sorted range.

template<class RandomAccessIterator>  
   void sort_heap(  
      RandomAccessIterator _First,   
      RandomAccessIterator _Last  
   );  
template<class RandomAccessIterator, class Predicate>  
   void sort_heap(  
      RandomAccessIterator _First,   
      RandomAccessIterator _Last,  
      Predicate _Comp  
   );  

Parameters

_First
A random-access iterator addressing the position of the first element in the target heap.

_Last
A random-access iterator addressing the position one past the final element in the target heap.

_Comp
User-defined predicate function object that defines sense in which one element is less than another. A binary predicate takes two arguments and returns true when satisfied and false when not satisfied.

Remarks

Heaps have two properties:

  • The first element is always the largest.

  • Elements may be added or removed in logarithmic time.

After the application if this algorithm, the range it was applied to is no longer a heap.

This is not a stable sort because the relative order of equivalent elements is not necessarily preserved.

Heaps are an ideal way to implement priority queues and they are used in the implementation of the Standard Template Library container adaptor priority_queue Class.

The range referenced must be valid; all pointers must be dereferenceable and within the sequence the last position is reachable from the first by incrementation.

The complexity is at most N log N, where N = ( _Last – _First).

Example

// alg_sort_heap.cpp  
// compile with: /EHsc  
#include <algorithm>  
#include <functional>  
#include <iostream>  
#include <ostream>  
#include <string>  
#include <vector>  
using namespace std;  
  
void print(const string& s, const vector<int>& v) {  
    cout << s << ": ( ";  
  
    for (auto i = v.begin(); i != v.end(); ++i) {  
        cout << *i << " ";  
    }  
  
    cout << ")" << endl;  
}  
  
int main() {  
    vector<int> v;  
    for (int i = 1; i <= 9; ++i) {  
        v.push_back(i);  
    }  
    print("Initially", v);  
  
    random_shuffle(v.begin(), v.end());  
    print("After random_shuffle", v);  
  
    make_heap(v.begin(), v.end());  
    print("     After make_heap", v);  
  
    sort_heap(v.begin(), v.end());  
    print("     After sort_heap", v);  
  
    random_shuffle(v.begin(), v.end());  
    print("             After random_shuffle", v);  
  
    make_heap(v.begin(), v.end(), greater<int>());  
    print("After make_heap with greater<int>", v);  
  
    sort_heap(v.begin(), v.end(), greater<int>());  
    print("After sort_heap with greater<int>", v);  
}  

stable_partition

Classifies elements in a range into two disjoint sets, with those elements satisfying a unary predicate preceding those that fail to satisfy it, preserving the relative order of equivalent elements.

template<class BidirectionalIterator, class Predicate>  
BidirectionalIterator stable_partition(  
    BidirectionalIterator _First,  
    BidirectionalIteratorLast,  
    Predicate _Pred );  
  

Parameters

_First
A bidirectional iterator addressing the position of the first element in the range to be partitioned.

_Last
A bidirectional iterator addressing the position one past the final element in the range to be partitioned.

_Pred
User-defined predicate function object that defines the condition to be satisfied if an element is to be classified. A predicate takes single argument and returns true or false.

Return Value

A bidirectional iterator addressing the position of the first element in the range to not satisfy the predicate condition.

Remarks

The range referenced must be valid; all pointers must be dereferenceable and within the sequence the last position is reachable from the first by incrementation.

Elements a and b are equivalent, but not necessarily equal, if both Pr ( a, b) is false and Pr ( b, a) if false, where Pr is the parameter-specified predicate. The stable_ partition algorithm is stable and guarantees that the relative ordering of equivalent elements will be preserved. The algorithm partition does not necessarily preserve this original ordering.

Example

// alg_stable_partition.cpp  
// compile with: /EHsc  
#include <vector>  
#include <algorithm>  
#include <iostream>  
  
bool greater5 ( int value ) {  
   return value >5;  
}  
  
int main( ) {  
   using namespace std;  
   vector <int> v1, v2;  
   vector <int>::iterator Iter1, Iter2, result;  
  
   int i;  
   for ( i = 0 ; i <= 10 ; i++ )  
      v1.push_back( i );  
  
   int ii;  
   for ( ii = 0 ; ii <= 4 ; ii++ )  
      v1.push_back( 5 );  
  
   random_shuffle(v1.begin( ), v1.end( ) );  
  
   cout << "Vector v1 is ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
  
   // Partition the range with predicate greater10  
   result = stable_partition (v1.begin( ), v1.end( ), greater5 );  
   cout << "The partitioned set of elements in v1 is:\n ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
  
   cout << "The first element in v1 to fail to satisfy the"  
        << "\n predicate greater5 is: " << *result << "." << endl;  
}  

stable_sort

Arranges the elements in a specified range into a nondescending order or according to an ordering criterion specified by a binary predicate and preserves the relative ordering of equivalent elements.

template<class BidirectionalIterator>  
 void stable_sort( BidirectionalIterator _First, BidirectionalIteratorLast );  
  
template<class BidirectionalIterator, class BinaryPredicate>  
void stable_sort(   
    BidirectionalIterator _First,  
    BidirectionalIteratorLast,   
    BinaryPredicate _Comp );  
  

Parameters

_First
A bidirectional iterator addressing the position of the first element in the range to be sorted.

_Last
A bidirectional iterator addressing the position one past the final element in the range to be sorted.

_Comp
User-defined predicate function object that defines the comparison criterion to be satisfied by successive elements in the ordering. A binary predicate takes two arguments and returns true when satisfied and false when not satisfied.

Remarks

The range referenced must be valid; all pointers must be dereferenceable and within the sequence the last position is reachable from the first by incrementation.

Elements are equivalent, but not necessarily equal, if neither is less than the other. The sort algorithm is stable and guarantees that the relative ordering of equivalent elements will be preserved.

The run-time complexity of stable_sort depends on the amount of memory available, but the best case (given sufficient memory) is O( N log N) and the worst case is O( N ( log N )2 ), where N = _Last – First. Usually, the sort algorithm is significantly faster than stable_sort.

Example

// alg_stable_sort.cpp  
// compile with: /EHsc  
#include <vector>  
#include <algorithm>  
#include <functional>      // For greater<int>( )  
#include <iostream>  
  
// Return whether first element is greater than the second  
bool UDgreater (int elem1, int elem2 )  
{  
   return elem1 > elem2;  
}  
  
int main( )  
{  
   using namespace std;  
   vector <int> v1;  
   vector <int>::iterator Iter1;  
  
   int i;  
   for ( i = 0 ; i <= 5 ; i++ )  
   {  
      v1.push_back( 2 * i );  
   }  
  
   for ( i = 0 ; i <= 5 ; i++ )  
   {  
      v1.push_back( 2 * i  );  
   }  
  
   cout << "Original vector v1 = ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")" << endl;  
  
   stable_sort(v1.begin( ), v1.end( ) );  
   cout << "Sorted vector v1 = ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")" << endl;  
  
   // To sort in descending order, specify binary predicate  
   stable_sort(v1.begin( ), v1.end( ), greater<int>( ) );  
   cout << "Resorted (greater) vector v1 = ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")" << endl;  
  
   // A user-defined (UD) binary predicate can also be used  
   stable_sort(v1.begin( ), v1.end( ), UDgreater );  
   cout << "Resorted (UDgreater) vector v1 = ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")" << endl;  
}  
Original vector v1 = ( 0 2 4 6 8 10 0 2 4 6 8 10 )  
Sorted vector v1 = ( 0 0 2 2 4 4 6 6 8 8 10 10 )  
Resorted (greater) vector v1 = ( 10 10 8 8 6 6 4 4 2 2 0 0 )  
Resorted (UDgreater) vector v1 = ( 10 10 8 8 6 6 4 4 2 2 0 0 )  

swap

The first override exchanges the values of two objects. The second override exchanges the values between two arrays of objects.

template<class Type>  
   void swap(  
      Type& _Left,   
      Type& _Right  
   );  
template<class Type, size_t N>  
   void swap(  
      Type (& _Left)[N],  
      Type (& _Right)[N]  
   );  

Parameters

_Left
For the first override, the first object to have its contents exchanged. For the second override, the first array of objects to have its contents exchanged.

_Right
For the first override, the second object to have its contents exchanged. For the second override, the second array of objects to have its contents exchanged.

Remarks

The first overload is designed to operate on individual objects. The second overload swaps the contents of objects between two arrays.

Example

// alg_swap.cpp  
// compile with: /EHsc  
#include <vector>  
#include <algorithm>  
#include <iostream>  
  
int main( )   
{  
   using namespace std;  
   vector <int> v1, v2;  
   vector <int>::iterator Iter1, Iter2, result;  
  
   for ( int i = 0 ; i <= 10 ; i++ )  
   {  
      v1.push_back( i );  
   }  
  
   for ( int ii = 0 ; ii <= 4 ; ii++ )  
   {  
      v2.push_back( 5 );  
   }  
  
   cout << "Vector v1 is ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
  
   cout << "Vector v2 is ( " ;  
   for ( Iter2 = v2.begin( ) ; Iter2 != v2.end( ) ; Iter2++ )  
      cout << *Iter2 << " ";  
   cout << ")." << endl;  
  
   swap( v1, v2 );  
  
   cout << "Vector v1 is ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
  
   cout << "Vector v2 is ( " ;  
   for ( Iter2 = v2.begin( ) ; Iter2 != v2.end( ) ; Iter2++ )  
      cout << *Iter2 << " ";  
   cout << ")." << endl;  
}  
Vector v1 is ( 0 1 2 3 4 5 6 7 8 9 10 ).  
Vector v2 is ( 5 5 5 5 5 ).  
Vector v1 is ( 5 5 5 5 5 ).  
Vector v2 is ( 0 1 2 3 4 5 6 7 8 9 10 ).  

swap_ranges

Exchanges the elements of one range with the elements of another, equal sized range.

template<class ForwardIterator1, class ForwardIterator2>  
ForwardIterator2 swap_ranges(   
   ForwardIterator1 _First1,  
   ForwardIterator1Last1,  
   ForwardIterator2 _First2 );  
  

Parameters

_First1
A forward iterator pointing to the first position of the first range whose elements are to be exchanged.

_Last1
A forward iterator pointing to one past the final position of the first range whose elements are to be exchanged.

_First2
A forward iterator pointing to the first position of the second range whose elements are to be exchanged.

Return Value

A forward iterator pointing to one past the final position of the second range whose elements are to be exchanged.

Remarks

The ranges referenced must be valid; all pointers must be dereferenceable and within each sequence the last position is reachable from the first by incrementation. The second range has to be as large as the first range.

The complexity is linear with _Last1_First1 swaps performed. If elements from containers of the same type are being swapped, them the swap member function from that container should be used, because the member function typically has constant complexity.

Example

// alg_swap_ranges.cpp  
// compile with: /EHsc  
#include <vector>  
#include <deque>  
#include <algorithm>  
#include <iostream>  
  
int main( )   
{  
   using namespace std;  
   vector <int> v1;  
   deque <int> d1;  
   vector <int>::iterator v1Iter1;  
   deque<int>::iterator d1Iter1;  
  
   int i;  
   for ( i = 0 ; i <= 5 ; i++ )  
   {  
      v1.push_back( i );  
   }  
  
   int ii;  
   for ( ii =4 ; ii <= 9 ; ii++ )  
   {  
      d1.push_back( 6 );  
   }  
  
   cout << "Vector v1 is ( " ;  
   for ( v1Iter1 = v1.begin( ) ; v1Iter1 != v1.end( ) ;v1Iter1 ++ )  
      cout << *v1Iter1  << " ";  
   cout << ")." << endl;  
  
   cout << "Deque d1 is  ( " ;  
   for ( d1Iter1 = d1.begin( ) ; d1Iter1 != d1.end( ) ;d1Iter1 ++ )  
      cout << *d1Iter1  << " ";  
   cout << ")." << endl;  
  
   swap_ranges ( v1.begin ( ) , v1.end ( ) , d1.begin ( ) );  
  
   cout << "After the swap_range, vector v1 is ( " ;  
   for ( v1Iter1 = v1.begin( ) ; v1Iter1 != v1.end( ) ;v1Iter1 ++ )  
      cout << *v1Iter1 << " ";  
   cout << ")." << endl;  
  
   cout << "After the swap_range deque d1 is   ( " ;  
   for ( d1Iter1 = d1.begin( ) ; d1Iter1 != d1.end( ) ;d1Iter1 ++ )  
      cout << *d1Iter1 << " ";  
   cout << ")." << endl;  
}  
Vector v1 is ( 0 1 2 3 4 5 ).  
Deque d1 is  ( 6 6 6 6 6 6 ).  
After the swap_range, vector v1 is ( 6 6 6 6 6 6 ).  
After the swap_range deque d1 is   ( 0 1 2 3 4 5 ).  

transform

Applies a specified function object to each element in a source range or to a pair of elements from two source ranges and copies the return values of the function object into a destination range.

 template<class InputIterator, class OutputIterator, class UnaryFunction>  
 OutputIterator transform(  
    InputIterator _First1,  
    InputIterator _Last1,  
    OutputIterator _Result,  
    UnaryFunction _Func );  
  
template<class InputIterator1, class InputIterator2, class OutputIterator, class BinaryFunction>  
OutputIterator transform(   
    InputIterator1 _First1,  
    InputIterator1Last1,  
    InputIterator2 _First2,  
    OutputIterator _Result,  
    BinaryFunction _Func );  
  

Parameters

_First1
An input iterator addressing the position of the first element in the first source range to be operated on.

_Last1
An input iterator addressing the position one past the final element in the first source range operated on.

_First2
An input iterator addressing the position of the first element in the second source range to be operated on.

_Result
An output iterator addressing the position of the first element in the destination range.

_Func
User-defined unary function object used in the first version of the algorithm that is applied to each element in the first source range or A user-defined (UD) binary function object used in the second version of the algorithm that is applied pairwise, in a forward order, to the two source ranges.

Return Value

An output iterator addressing the position one past the final element in the destination range that is receiving the output elements transformed by the function object.

Remarks

The ranges referenced must be valid; all pointers must be dereferenceable and within each sequence the last position must be reachable from the first by incrementation. The destination range must be large enough to contain the transformed source range.

If _Result is set equal to _First1 in the first version of the algorithm , then the source and destination ranges will be the same and the sequence will be modified in place. But the _Result may not address a position within the range [ _First1 +1, _Last1).

The complexity is linear with at most ( _Last1_First1) comparisons.

Example

// alg_transform.cpp  
// compile with: /EHsc  
#include <vector>  
#include <algorithm>  
#include <functional>  
#include <iostream>  
  
// The function object multiplies an element by a Factor  
template <class Type>  
class MultValue  
{  
   private:  
      Type Factor;   // The value to multiply by  
   public:  
      // Constructor initializes the value to multiply by  
      MultValue ( const Type& _Val ) : Factor ( _Val ) {  
      }  
  
      // The function call for the element to be multiplied  
      Type operator ( ) ( Type& elem ) const   
      {  
         return elem * Factor;  
      }  
};  
  
int main( )  
{  
   using namespace std;  
   vector <int> v1, v2 ( 7 ), v3 ( 7 );  
   vector <int>::iterator Iter1, Iter2 , Iter3;  
  
   // Constructing vector v1  
   int i;  
   for ( i = -4 ; i <= 2 ; i++ )  
   {  
      v1.push_back(  i );  
   }  
  
   cout << "Original vector  v1 = ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
  
   // Modifying the vector v1 in place  
   transform (v1.begin ( ) , v1.end ( ) , v1.begin ( ) , MultValue<int> ( 2 ) );  
   cout << "The elements of the vector v1 multiplied by 2 in place gives:"  
        << "\n v1mod = ( " ;  
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )  
      cout << *Iter1 << " ";  
   cout << ")." << endl;  
  
   // Using transform to multiply each element by a factor of 5  
   transform ( v1.begin ( ) , v1.end ( ) , v2.begin ( ) , MultValue<int> ( 5 ) );  
  
   cout << "Multiplying the elements of the vector v1mod\n "  
        <<  "by the factor 5 & copying to v2 gives:\n v2 = ( " ;  
   for ( Iter2 = v2.begin( ) ; Iter2 != v2.end( ) ; Iter2++ )  
      cout << *Iter2 << " ";  
   cout << ")." << endl;  
  
   // The second version of transform used to multiply the   
   // elements of the vectors v1mod & v2 pairwise  
   transform ( v1.begin ( ) , v1.end ( ) ,  v2.begin ( ) , v3.begin ( ) ,   
      multiplies <int> ( ) );  
  
   cout << "Multiplying elements of the vectors v1mod and v2 pairwise "  
        <<  "gives:\n v3 = ( " ;  
   for ( Iter3 = v3.begin( ) ; Iter3 != v3.end( ) ; Iter3++ )  
      cout << *Iter3 << " ";  
   cout << ")." << endl;  
}  
Original vector  v1 = ( -4 -3 -2 -1 0 1 2 ).  
The elements of the vector v1 multiplied by 2 in place gives:  
 v1mod = ( -8 -6 -4 -2 0 2 4 ).  
Multiplying the elements of the vector v1mod  
 by the factor 5 & copying to v2 gives:  
 v2 = ( -40 -30 -20 -10 0 10 20 ).  
Multiplying elements of the vectors v1mod and v2 pairwise gives:  
 v3 = ( 320 180 80 20 0 20 80 ).  

unique

Removes duplicate elements that are adjacent to each other in a specified range.

template<class ForwardIterator>  
   ForwardIterator unique(  
      ForwardIterator _First,   
      ForwardIterator _Last  
   );  
template<class ForwardIterator, class Predicate>  
   ForwardIterator unique(  
      ForwardIterator _First,   
      ForwardIterator _Last,  
      Predicate _Comp  
   );  

Parameters

_First
A forward iterator addressing the position of the first element in the range to be scanned for duplicate removal.

_Last
A forward iterator addressing the position one past the final element in the range to be scanned for duplicate removal.

_Comp
User-defined predicate function object that defines the condition to be satisfied if two elements are to be taken as equivalent. A binary predicate takes two arguments and returns true when satisfied and false when not satisfied.

Return Value

A forward iterator to the new end of the modified sequence that contains no consecutive duplicates, addressing the position one past the last element not removed.

Remarks

Both forms of the algorithm remove the second duplicate of a consecutive pair of equal elements.

The operation of the algorithm is stable so that the relative order of the undeleted elements is not changed.

The range referenced must be valid; all pointers must be dereferenceable and within the sequence the last position is reachable from the first by incrementation. he number of elements in the sequence is not changed by the algorithm unique and the elements beyond the end of the modified sequence are dereferenceable but not specified.

The complexity is linear, requiring ( _Last_First) – 1 comparisons.

List provides a more efficient member function "unique", which may perform better.

These algorithms cannot be used on an associative container.

Example

// alg_unique.cpp  
// compile with: /EHsc  
#include <vector>  
#include <algorithm>  
#include <functional>  
#include <iostream>  
#include <ostream>  
  
using namespace std;  
  
// Return whether modulus of elem1 is equal to modulus of elem2  
bool mod_equal ( int elem1, int elem2 )  
{  
   if ( elem1 < 0 )   
      elem1 = - elem1;  
   if ( elem2 < 0 )   
      elem2 = - elem2;  
   return elem1 == elem2;  
};  
  
int main( )  
{  
   vector <int> v1;  
   vector <int>::iterator v1_Iter1, v1_Iter2, v1_Iter3,  
         v1_NewEnd1, v1_NewEnd2, v1_NewEnd3;  
  
   int i;  
   for ( i = 0 ; i <= 3 ; i++ )  
   {  
      v1.push_back( 5 );  
      v1.push_back( -5 );  
   }  
  
   int ii;  
   for ( ii = 0 ; ii <= 3 ; ii++ )  
   {  
      v1.push_back( 4 );  
   }  
   v1.push_back( 7 );  
  
   cout << "Vector v1 is ( " ;  
   for ( v1_Iter1 = v1.begin( ) ; v1_Iter1 != v1.end( ) ; v1_Iter1++ )  
      cout << *v1_Iter1 << " ";  
   cout << ")." << endl;  
  
   // Remove consecutive duplicates  
   v1_NewEnd1 = unique ( v1.begin ( ) , v1.end ( ) );  
  
   cout << "Removing adjacent duplicates from vector v1 gives\n ( " ;  
   for ( v1_Iter1 = v1.begin( ) ; v1_Iter1 != v1_NewEnd1 ; v1_Iter1++ )  
      cout << *v1_Iter1 << " ";  
   cout << ")." << endl;  
  
   // Remove consecutive duplicates under the binary prediate mod_equals  
   v1_NewEnd2 = unique ( v1.begin ( ) , v1_NewEnd1 , mod_equal );  
  
   cout << "Removing adjacent duplicates from vector v1 under the\n "  
        << " binary predicate mod_equal gives\n ( " ;  
   for ( v1_Iter2 = v1.begin( ) ; v1_Iter2 != v1_NewEnd2 ; v1_Iter2++ )  
      cout << *v1_Iter2 << " ";  
   cout << ")." << endl;  
  
   // Remove elements if preceded by an element that was greater  
   v1_NewEnd3 = unique ( v1.begin ( ) , v1_NewEnd2, greater<int>( ) );  
  
   cout << "Removing adjacent elements satisfying the binary\n "  
        << " predicate mod_equal from vector v1 gives ( " ;  
   for ( v1_Iter3 = v1.begin( ) ; v1_Iter3 != v1_NewEnd3 ; v1_Iter3++ )  
      cout << *v1_Iter3 << " ";  
   cout << ")." << endl;  
}  
Vector v1 is ( 5 -5 5 -5 5 -5 5 -5 4 4 4 4 7 ).  
Removing adjacent duplicates from vector v1 gives  
 ( 5 -5 5 -5 5 -5 5 -5 4 7 ).  
Removing adjacent duplicates from vector v1 under the  
  binary predicate mod_equal gives  
 ( 5 4 7 ).  
Removing adjacent elements satisfying the binary  
  predicate mod_equal from vector v1 gives ( 5 7 ).  

unique_copy

Copies elements from a source range into a destination range except for the duplicate elements that are adjacent to each other.

 template<class InputIterator, class OutputIterator>  
 OutputIterator unique_copy( InputIterator _First,  
    InputIterator _Last,  
    OutputIterator _Result );  
  
template<class InputIterator, class OutputIterator, class BinaryPredicate>  
OutputIterator unique_copy( InputIterator _First,  
    InputIterator _Last,  
    OutputIterator _Result,  
    BinaryPredicate _Comp );  
  

Parameters

_First
A forward iterator addressing the position of the first element in the source range to be copied.

_Last
A forward iterator addressing the position one past the final element in the source range to be copied.

_Result
An output iterator addressing the position of the first element in the destination range that is receiving the copy with consecutive duplicates removed.

_Comp
User-defined predicate function object that defines the condition to be satisfied if two elements are to be taken as equivalent. A binary predicate takes two arguments and returns true when satisfied and false when not satisfied.

Return Value

An output iterator addressing the position one past the final element in the destination range that is receiving the copy with consecutive duplicates removed.

Remarks

Both forms of the algorithm remove the second duplicate of a consecutive pair of equal elements.

The operation of the algorithm is stable so that the relative order of the undeleted elements is not changed.

The ranges referenced must be valid; all pointers must be dereferenceable and within a sequence the last position is reachable from the first by incrementation.

The complexity is linear, requiring ( _Last_First) comparisons.

Example

// alg_unique_copy.cpp  
// compile with: /EHsc  
#include <vector>  
#include <algorithm>  
#include <functional>  
#include <iostream>  
#include <ostream>  
  
using namespace std;  
  
// Return whether modulus of elem1 is equal to modulus of elem2  
bool mod_equal ( int elem1, int elem2 ) {  
   if ( elem1 < 0 )   
      elem1 = - elem1;  
   if ( elem2 < 0 )   
      elem2 = - elem2;  
   return elem1 == elem2;  
};  
  
int main() {  
   vector <int> v1;  
   vector <int>::iterator v1_Iter1, v1_Iter2,  
         v1_NewEnd1, v1_NewEnd2;  
  
   int i;  
   for ( i = 0 ; i <= 1 ; i++ ) {  
      v1.push_back( 5 );  
      v1.push_back( -5 );  
   }  
  
   int ii;  
   for ( ii = 0 ; ii <= 2 ; ii++ )  
      v1.push_back( 4 );  
   v1.push_back( 7 );  
  
   int iii;  
   for ( iii = 0 ; iii <= 5 ; iii++ )  
      v1.push_back( 10 );  
  
   cout << "Vector v1 is\n ( " ;  
   for ( v1_Iter1 = v1.begin( ) ; v1_Iter1 != v1.end( ) ; v1_Iter1++ )  
      cout << *v1_Iter1 << " ";  
   cout << ")." << endl;  
  
   // Copy first half to second, removing consecutive duplicates  
   v1_NewEnd1 = unique_copy ( v1.begin ( ) , v1.begin ( ) + 8, v1.begin ( ) + 8 );  
  
   cout << "Copying the first half of the vector to the second half\n "  
        << "while removing adjacent duplicates gives\n ( " ;  
   for ( v1_Iter1 = v1.begin( ) ; v1_Iter1 != v1_NewEnd1 ; v1_Iter1++ )  
      cout << *v1_Iter1 << " ";  
   cout << ")." << endl;  
  
   int iv;  
   for ( iv = 0 ; iv <= 7 ; iv++ )  
      v1.push_back( 10 );  
  
   // Remove consecutive duplicates under the binary prediate mod_equals  
   v1_NewEnd2 = unique_copy ( v1.begin ( ) , v1.begin ( ) + 14,   
      v1.begin ( ) + 14 , mod_equal );  
  
   cout << "Copying the first half of the vector to the second half\n "  
        << " removing adjacent duplicates under mod_equals gives\n ( " ;  
   for ( v1_Iter2 = v1.begin( ) ; v1_Iter2 != v1_NewEnd2 ; v1_Iter2++ )  
      cout << *v1_Iter2 << " ";  
   cout << ")." << endl;  
}  

upper_bound

Finds the position of the first element in an ordered range that has a value that is greater than a specified value, where the ordering criterion may be specified by a binary predicate.

template<class ForwardIterator, class Type>  
   ForwardIterator upper_bound(  
      ForwardIterator first,   
      ForwardIterator last,  
      const Type& value  
   );  
template<class ForwardIterator, class Type, class Predicate>  
   ForwardIterator upper_bound(  
      ForwardIterator first,   
      ForwardIterator last,  
      const Type& value,  
      Predicate comp  
   );  

Parameters

first
The position of the first element in the range to be searched.

last
The position one past the final element in the range to be searched.

value
The value in the ordered range that needs to be exceeded by the value of the element addressed by the iterator returned.

comp
User-defined predicate function object that defines sense in which one element is less than another. A binary predicate takes two arguments and returns true when satisfied and false when not satisfied.

Return Value

A forward iterator to the position of the first element that has a value greater than a specified value.

Remarks

The sorted source range referenced must be valid; all iterators must be dereferenceable and within the sequence the last position must be reachable from the first by incrementation.

A sorted range is a precondition of the use of upper_bound and where the ordering criterion is the same as specified by the binary predicate.

The range is not modified by upper_bound.

The value types of the forward iterators need be less-than comparable to be ordered, so that, given two elements, it may be determined either that they are equivalent (in the sense that neither is less than the other) or that one is less than the other. This results in an ordering between the nonequivalent elements

The complexity of the algorithm is logarithmic for random-access iterators and linear otherwise, with the number of steps proportional to ( last - first).

Example

// alg_upper_bound.cpp  
// compile with: /EHsc  
#include <vector>  
#include <algorithm>  
#include <functional>      // greater<int>( )  
#include <iostream>  
  
// Return whether modulus of elem1 is less than modulus of elem2  
bool mod_lesser( int elem1, int elem2 )  
{  
    if ( elem1 < 0 )  
        elem1 = - elem1;  
    if ( elem2 < 0 )  
        elem2 = - elem2;  
    return elem1 < elem2;  
}  
  
int main( )  
{  
    using namespace std;  
  
    vector<int> v1;  
    // Constructing vector v1 with default less-than ordering  
    for ( auto i = -1 ; i <= 4 ; ++i )  
    {  
        v1.push_back(  i );  
    }  
  
    for ( auto ii =-3 ; ii <= 0 ; ++ii )  
    {  
        v1.push_back(  ii  );  
    }  
  
    cout << "Starting vector v1 = ( " ;  
    for (const auto &Iter : v1)  
        cout << Iter << " ";  
    cout << ")." << endl;  
  
    sort(v1.begin(), v1.end());  
    cout << "Original vector v1 with range sorted by the\n "  
        << "binary predicate less than is v1 = ( " ;  
    for (const auto &Iter : v1)  
        cout << Iter << " ";  
    cout << ")." << endl;  
  
    // Constructing vector v2 with range sorted by greater  
    vector<int> v2(v1);  
  
    sort(v2.begin(), v2.end(), greater<int>());  
  
    cout << "Original vector v2 with range sorted by the\n "  
        << "binary predicate greater is v2 = ( " ;  
    for (const auto &Iter : v2)  
        cout << Iter << " ";  
    cout << ")." << endl;  
  
    // Constructing vectors v3 with range sorted by mod_lesser  
    vector<int> v3(v1);  
    sort(v3.begin(), v3.end(), mod_lesser);  
  
    cout << "Original vector v3 with range sorted by the\n "  
        <<  "binary predicate mod_lesser is v3 = ( " ;  
    for (const auto &Iter : v3)  
        cout << Iter << " ";  
    cout << ")." << endl;  
  
    // Demonstrate upper_bound  
  
    vector<int>::iterator Result;  
  
    // upper_bound of 3 in v1 with default binary predicate less<int>()  
    Result = upper_bound(v1.begin(), v1.end(), 3);  
    cout << "The upper_bound in v1 for the element with a value of 3 is: "  
        << *Result << "." << endl;  
  
    // upper_bound of 3 in v2 with the binary predicate greater<int>( )  
    Result = upper_bound(v2.begin(), v2.end(), 3, greater<int>());  
    cout << "The upper_bound in v2 for the element with a value of 3 is: "  
        << *Result << "." << endl;  
  
    // upper_bound of 3 in v3 with the binary predicate  mod_lesser  
    Result = upper_bound(v3.begin(), v3.end(), 3,  mod_lesser);  
    cout << "The upper_bound in v3 for the element with a value of 3 is: "  
        << *Result << "." << endl;  
}  
  

See Also

<algorithm>