Freigeben über


log

Gibt den natürlichen Logarithmus einer komplexen Zahl zurück.

template<class Type> 
   complex<Type> log( 
      const complex<Type>& _ComplexNum 
   );

Parameter

  • _ComplexNum
    Die komplexe Zahl, deren natürlicher Logarithmus bestimmt wird.

Rückgabewert

Die komplexe Zahl, mit der natürliche Logarithmus der Eingabekomplexen dafür ist.

Hinweise

Die Verzweigungsschnitte sind auf der negativen tatsächlichen Achse.

Beispiel

// complex_log.cpp
// compile with: /EHsc
#include <vector>
#include <complex>
#include <iostream>

int main() {
   using namespace std;
   double pi = 3.14159265359;
   complex <double> c1 ( 3.0 , 4.0 );
   cout << "Complex number c1 = " << c1 << endl;

   // Values of log of a complex number c1
   complex <double> c2 = log ( c1 );
   cout << "Complex number c2 = log ( c1 ) = " << c2 << endl;
   double absc2 = abs ( c2 );
   double argc2 = arg ( c2 );
   cout << "The modulus of c2 is: " << absc2 << endl;
   cout << "The argument of c2 is: "<< argc2 << " radians, which is " 
        << argc2 * 180 / pi << " degrees." << endl << endl; 

   // log of the standard angles  
   // in the first two quadrants of the complex plane
   vector <complex <double> > v1;
   vector <complex <double> >::iterator Iter1;
   complex <double> vc1  ( polar (1.0, pi / 6) );
   v1.push_back( log ( vc1 ) );
   complex <double> vc2  ( polar (1.0, pi / 3) );
   v1.push_back( log ( vc2 ) );
   complex <double> vc3  ( polar (1.0, pi / 2) );
   v1.push_back( log ( vc3) );
   complex <double> vc4  ( polar (1.0, 2 * pi / 3) );
   v1.push_back( log ( vc4 ) );
   complex <double> vc5  ( polar (1.0, 5 * pi / 6) );
   v1.push_back( log ( vc5 ) );
   complex <double> vc6  ( polar (1.0,  pi ) );
   v1.push_back( log ( vc6 ) );

   cout << "The complex components log (vci), where abs (vci) = 1 "
        << "\n& arg (vci) = i * pi / 6 of the vector v1 are:\n" ;
   for ( Iter1 = v1.begin() ; Iter1 != v1.end() ; Iter1++ )
      cout << *Iter1 << " " << endl;
}

Beispielausgabe

Complex number c1 = (3,4)
Complex number c2 = log ( c1 ) = (1.60944,0.927295)
The modulus of c2 is: 1.85746
The argument of c2 is: 0.522706 radians, which is 29.9489 degrees.

The complex components log (vci), where abs (vci) = 1 
& arg (vci) = i * pi / 6 of the vector v1 are:
(0,0.523599) 
(0,1.0472) 
(0,1.5708) 
(0,2.0944) 
(0,2.61799) 
(0,-3.14159) 

Anforderungen

Header: <komplex>

Namespace: std