Freigeben über


geo_union_polygons_array()

Gilt für: ✅Microsoft Fabric✅Azure Data ExplorerAzure MonitorMicrosoft Sentinel

Berechnet die Vereinigung von Polygonen oder Multipolygonen auf der Erde.

Syntax

geo_union_polygons_array(Vielecke)

Erfahren Sie mehr über Syntaxkonventionen.

Parameter

Name Type Erforderlich Beschreibung
Vielecke dynamic ✔️ Ein Array von Polygonen oder Multipolygons im GeoJSON-Format.

Gibt zurück

Ein Polygon oder ein Multipolygon im GeoJSON-Format und eines dynamischen Datentyps. Wenn eines der bereitgestellten Polygone oder Multipolygons ungültig ist, erzeugt die Abfrage ein NULL-Ergebnis.

Hinweis

  • Die Geospatialkoordinaten werden durch das WGS-84-Koordinatenverweissystem interpretiert.
  • Das geodetische Datum , das für Messungen auf der Erde verwendet wird, ist eine Kugel. Polygonränder sind geodätische Ränder auf der Kugel.
  • Wenn eingabe polygonale Kanten gerade kartesische Linien sind, sollten Sie geo_polygon_densify() verwenden, um planare Kanten in Geodästik zu konvertieren.

Polygondefinition und Einschränkungen

dynamic({"type": "Polygon","coordinates": [ LinearRingShell, LinearRingHole_1, ..., LinearRingHole_N ]})

dynamic({"type": "MultiPolygon","coordinates": [[ LinearRingShell, LinearRingHole_1, ..., LinearRingHole_N], ..., [LinearRingShell, LinearRingHole_1, ..., LinearRingHole_M]]})

  • LinearRingShell ist erforderlich und definiert als ein counterclockwise sortiertes Array von Koordinaten [[lng_1,lat_1],...,[lng_i,lat_i],...,[lng_j,lat_j],...,[lng_1,lat_1]]. Es kann nur eine Shell vorhanden sein.
  • LinearRingHole ist optional und definiert als ein clockwise sortiertes Array von Koordinaten [[lng_1,lat_1],...,[lng_i,lat_i],...,[lng_j,lat_j],...,[lng_1,lat_1]]. Es kann eine beliebige Anzahl von Innenringen und Löchern geben.
  • LinearRing-Scheitelpunkte müssen mit mindestens drei Koordinaten unterschieden werden. Die erste Koordinate muss mit der letzten koordinate gleich sein. Mindestens vier Einträge sind erforderlich.
  • Koordinaten [Längengrad, Breitengrad] müssen gültig sein. Längengrad muss eine reelle Zahl im Bereich [-180, +180] sein, und breitengrad muss eine reelle Zahl im Bereich [-90, +90] sein.
  • LinearRingShell schließt höchstens die Hälfte der Kugel ein. LinearRing teilt die Kugel in zwei Bereiche auf. Die kleineren der beiden Regionen werden ausgewählt.
  • Die Länge des LinearRing-Rands muss kleiner als 180 Grad sein. Der kürzeste Rand zwischen den beiden Scheitelpunkten wird ausgewählt.
  • LinearRinge dürfen nicht kreuzen und dürfen keine Kanten teilen. LinearRinge können Scheitelpunkte teilen.

Beispiele

Im folgenden Beispiel werden geospatiale Vereinigungen in Polygonzeilen ausgeführt.

datatable(polygons:dynamic)
[
    dynamic({"type":"Polygon","coordinates":[[[-73.9495,40.7969],[-73.95807,40.80068],[-73.98201,40.76825],[-73.97317,40.76455],[-73.9495,40.7969]]]}),
    dynamic({"type":"Polygon","coordinates":[[[-73.94622,40.79249],[-73.96888,40.79282],[-73.9577,40.7789],[-73.94622,40.79249]]]}),
    dynamic({"type":"Polygon","coordinates":[[[-73.97335,40.77274],[-73.9936,40.76630],[-73.97171,40.75655],[-73.97335,40.77274]]]})
]
| summarize polygons_arr = make_list(polygons)
| project polygons_union = geo_union_polygons_array(polygons_arr)

Output

polygons_union
{"type":"Polygon","coordinates":[[[-73.972599326729608,40.765330371902991],[-73.960302383706178,40.782140794645024],[-73.9577,40.7789],[-73.94622,40.79249],[-73.9526593223173,40.792584227716468],[-73.9495,40.7969],[-73.95807,40.80068],[-73.9639277517478,40.792748258673875],[-73.96888,40.792819999999992],[-73.9662719791645,40.7895734224338],[-73.9803360309571,40.770518810606404],[-73.9936,40.7663],[-73.97171,40.756550000000004],[- 73.972599326729608,40.765330371902991]]]}

Im folgenden Beispiel werden geospatiale Vereinigungen für Polygonspalten ausgeführt.

datatable(polygon1:dynamic, polygon2:dynamic)
[
    dynamic({"type":"Polygon","coordinates":[[[-73.9495,40.7969],[-73.95807,40.80068],[-73.98201,40.76825],[-73.97317,40.76455],[-73.9495,40.7969]]]}), dynamic({"type":"Polygon","coordinates":[[[-73.94622,40.79249],[-73.96888,40.79282],[-73.9577,40.7789],[-73.94622,40.79249]]]})
]
| project polygons_arr = pack_array(polygon1, polygon2)
| project polygons_union = geo_union_polygons_array(polygons_arr)

Output

polygons_union
{"type":"Polygon","coordinates":[[-73.9495,40.7969],[-73.95807,40.80068],[-73.9639277517478,40.792748258673875],[-73.96888,40.7928199999999992],[-73.9662719791645,40.7895734224338],[-73.98201,940.76825],[-73.97317,40.76455],[-73.960302383706178,40.782140794645024],[-73.9577,40.7 [-73.94622,40.79249],[-73.95265932223173,40.792584227716468],[-73.9495,40.7969]]]}

Im folgenden Beispiel wird True zurückgegeben, da eines der Polygone ungültig ist.

datatable(polygons:dynamic)
[
    dynamic({"type":"Polygon","coordinates":[[[-73.9495,40.7969],[-73.95807,40.80068],[-73.98201,40.76825],[-73.97317,40.76455],[-73.9495,40.7969]]]}),
    dynamic({"type":"Polygon","coordinates":[[[-73.94622,40.79249]]]})
]
| summarize polygons_arr = make_list(polygons)
| project invalid_union = isnull(geo_union_polygons_array(polygons_arr))

Output

invalid_union
True