Freigeben über


series_shapes_fl()

Gilt für: ✅Microsoft Fabric✅Azure Data ExplorerAzure MonitorMicrosoft Sentinel

Die Funktion series_shapes_fl() ist eine benutzerdefinierte Funktion (UDF), die positiven/negativen Trend erkennt oder in einer Datenreihe springt. Diese Funktion verwendet eine Tabelle, die mehrere Zeitreihen (dynamische numerische Matrix) enthält, und berechnet Trend- und Sprungergebnisse für jede Datenreihe. Die Ausgabe ist ein Wörterbuch (dynamisch), das die Bewertungen enthält.

Syntax

T | extend series_shapes_fl(, y_series erweitert)

Erfahren Sie mehr über Syntaxkonventionen.

Parameter

Name Type Erforderlich Beschreibung
y_series dynamic ✔️ Eine Arrayzelle mit numerischen Werten.
advanced bool Der Standardwert ist false. Legen Sie diesen Parameter fest, true um zusätzliche berechnete Parameter auszugeben.

Funktionsdefinition

Sie können die Funktion definieren, indem Sie den Code entweder als abfragedefinierte Funktion einbetten oder wie folgt als gespeicherte Funktion in Ihrer Datenbank erstellen:

Definieren Sie die Funktion mithilfe der folgenden Let-Anweisung. Es sind keine Berechtigungen erforderlich.

Wichtig

Eine Let-Anweisung kann nicht alleine ausgeführt werden. Auf sie muss eine tabellarische Ausdrucksanweisung folgen. Informationen zum Ausführen eines funktionierenden Beispiels series_shapes_fl()finden Sie unter Beispiel.

let series_shapes_fl=(series:dynamic, advanced:bool=false)
{
    let n = array_length(series);
//  calculate normal dynamic range between 10th and 90th percentiles
    let xs = array_sort_asc(series);
    let low_idx = tolong(n*0.1);
    let high_idx = tolong(n*0.9);
    let low_pct = todouble(xs[low_idx]);
    let high_pct = todouble(xs[high_idx]);
    let norm_range = high_pct-low_pct;
//  trend score
    let lf = series_fit_line_dynamic(series);
    let slope = todouble(lf.slope);
    let rsquare = todouble(lf.rsquare);
    let rel_slope = abs(n*slope/norm_range);
    let sign_slope = iff(slope >= 0.0, 1.0, -1.0);
    let norm_slope = sign_slope*rel_slope/(rel_slope+0.1);  //  map rel_slope from [-Inf, +Inf] to [-1, 1]; 0.1 is a clibration constant
    let trend_score = norm_slope*rsquare;
//  jump score
    let lf2=series_fit_2lines_dynamic(series);
    let lslope = todouble(lf2.left.slope);
    let rslope = todouble(lf2.right.slope);
    let rsquare2 = todouble(lf2.rsquare);
    let split_idx = tolong(lf2.split_idx);
    let last_left = todouble(lf2.left.interception)+lslope*split_idx;
    let first_right = todouble(lf2.right.interception)+rslope;
    let jump = first_right-last_left;
    let rel_jump = abs(jump/norm_range);
    let sign_jump = iff(first_right >= last_left, 1.0, -1.0);
    let norm_jump = sign_jump*rel_jump/(rel_jump+0.1);  //  map rel_jump from [-Inf, +Inf] to [-1, 1]; 0.1 is a clibration constant
    let jump_score1 = norm_jump*rsquare2;
//  filter for jumps that are not close to the series edges and the right slope has the same direction
    let norm_rslope = abs(rslope/norm_range);
    let jump_score = iff((sign_jump*rslope >= 0.0 or norm_rslope < 0.02) and split_idx between((0.1*n)..(0.9*n)), jump_score1, 0.0);
    let res = iff(advanced, bag_pack("n", n, "low_pct", low_pct, "high_pct", high_pct, "norm_range", norm_range, "slope", slope, "rsquare", rsquare, "rel_slope", rel_slope, "norm_slope", norm_slope,
                              "trend_score", trend_score, "split_idx", split_idx, "jump", jump, "rsquare2", rsquare2, "last_left", last_left, "first_right", first_right, "rel_jump", rel_jump,
                              "lslope", lslope, "rslope", rslope, "norm_rslope", norm_rslope, "norm_jump", norm_jump, "jump_score", jump_score)
                              , bag_pack("trend_score", trend_score, "jump_score", jump_score));
    res
};
// Write your query to use the function here.

Beispiel

Um eine abfragedefinierte Funktion zu verwenden, rufen Sie sie nach der definition der eingebetteten Funktion auf.

let series_shapes_fl=(series:dynamic, advanced:bool=false)
{
    let n = array_length(series);
//  calculate normal dynamic range between 10th and 90th percentiles
    let xs = array_sort_asc(series);
    let low_idx = tolong(n*0.1);
    let high_idx = tolong(n*0.9);
    let low_pct = todouble(xs[low_idx]);
    let high_pct = todouble(xs[high_idx]);
    let norm_range = high_pct-low_pct;
//  trend score
    let lf = series_fit_line_dynamic(series);
    let slope = todouble(lf.slope);
    let rsquare = todouble(lf.rsquare);
    let rel_slope = abs(n*slope/norm_range);
    let sign_slope = iff(slope >= 0.0, 1.0, -1.0);
    let norm_slope = sign_slope*rel_slope/(rel_slope+0.1);  //  map rel_slope from [-Inf, +Inf] to [-1, 1]; 0.1 is a clibration constant
    let trend_score = norm_slope*rsquare;
//  jump score
    let lf2=series_fit_2lines_dynamic(series);
    let lslope = todouble(lf2.left.slope);
    let rslope = todouble(lf2.right.slope);
    let rsquare2 = todouble(lf2.rsquare);
    let split_idx = tolong(lf2.split_idx);
    let last_left = todouble(lf2.left.interception)+lslope*split_idx;
    let first_right = todouble(lf2.right.interception)+rslope;
    let jump = first_right-last_left;
    let rel_jump = abs(jump/norm_range);
    let sign_jump = iff(first_right >= last_left, 1.0, -1.0);
    let norm_jump = sign_jump*rel_jump/(rel_jump+0.1);  //  map rel_jump from [-Inf, +Inf] to [-1, 1]; 0.1 is a clibration constant
    let jump_score1 = norm_jump*rsquare2;
//  filter for jumps that are not close to the series edges and the right slope has the same direction
    let norm_rslope = abs(rslope/norm_range);
    let jump_score = iff((sign_jump*rslope >= 0.0 or norm_rslope < 0.02) and split_idx between((0.1*n)..(0.9*n)), jump_score1, 0.0);
    let res = iff(advanced, bag_pack("n", n, "low_pct", low_pct, "high_pct", high_pct, "norm_range", norm_range, "slope", slope, "rsquare", rsquare, "rel_slope", rel_slope, "norm_slope", norm_slope,
                              "trend_score", trend_score, "split_idx", split_idx, "jump", jump, "rsquare2", rsquare2, "last_left", last_left, "first_right", first_right, "rel_jump", rel_jump,
                              "lslope", lslope, "rslope", rslope, "norm_rslope", norm_rslope, "norm_jump", norm_jump, "jump_score", jump_score)
                              , bag_pack("trend_score", trend_score, "jump_score", jump_score));
    res
};
let ts_len = 100;
let noise_pct = 2;
let noise_gain = 3;
union
(print tsid=1 | extend y = array_concat(repeat(20, ts_len/2), repeat(150, ts_len/2))),
(print tsid=2 | extend y = array_concat(repeat(0, ts_len*3/4), repeat(-50, ts_len/4))),
(print tsid=3 | extend y = range(40, 139, 1)),
(print tsid=4 | extend y = range(-20, -109, -1))
| extend x = range(1, array_length(y), 1)
//
| extend shapes = series_shapes_fl(y)
| order by tsid asc 
| fork (take 4) (project tsid, shapes)
| render timechart with(series=tsid, xcolumn=x, ycolumns=y)

Output

Diagramm mit vier Zeitreihen mit Trends und Sprüngen.

Die jeweiligen Trend- und Sprungergebnisse:

tsid	shapes
1	    {
          "trend_score": 0.703199714530169,
          "jump_score": 0.90909090909090906
        }
2	    {
          "trend_score": -0.51663751343174869,
          "jump_score": -0.90909090909090906
        }
3	    {
          "trend_score": 0.92592592592592582,
          "jump_score": 0.0
        }
4	    {
          "trend_score": -0.92592592592592582,
          "jump_score": 0.0
        }