Vorgehensweise: Implementieren eines Partitionierers für statisches Partitionieren
Das folgende Beispiel zeigt eine Möglichkeit, einen einfachen benutzerdefinierten Partitionierer für PLINQ zu implementieren, der statische Partitionierung ausführt. Da der Partitionierer keine dynamischen Partitionen unterstützt, kann er von Parallel.ForEach nicht genutzt werden. Dieser spezielle Partitionierer kann möglicherweise bei Datenquellen, für die jedes Element zunehmende Verarbeitungszeit erfordert, gegenüber dem Standardbereichspartitionierer für Beschleunigung sorgen.
Beispiel
// A static range partitioner for sources that require
// a linear increase in processing time for each succeeding element.
// The range sizes are calculated based on the rate of increase
// with the first partition getting the most elements and the
// last partition getting the least.
class MyPartitioner : Partitioner<int>
{
int[] source;
double rateOfIncrease = 0;
public MyPartitioner(int[] source, double rate)
{
this.source = source;
rateOfIncrease = rate;
}
public override IEnumerable<int> GetDynamicPartitions()
{
throw new NotImplementedException();
}
// Not consumable from Parallel.ForEach.
public override bool SupportsDynamicPartitions
{
get
{
return false;
}
}
public override IList<IEnumerator<int>> GetPartitions(int partitionCount)
{
List<IEnumerator<int>> _list = new List<IEnumerator<int>>();
int end = 0;
int start = 0;
int[] nums = CalculatePartitions(partitionCount, source.Length);
for (int i = 0; i < nums.Length; i++)
{
start = nums[i];
if (i < nums.Length - 1)
end = nums[i + 1];
else
end = source.Length;
_list.Add(GetItemsForPartition(start, end));
// For demonstration.
Console.WriteLine("start = {0} b (end) = {1}", start, end);
}
return (IList<IEnumerator<int>>)_list;
}
/*
*
*
* B
// Model increasing workloads as a right triangle / |
divided into equal areas along vertical lines. / | |
Each partition is taller and skinnier / | |
than the last. / | | |
/ | | |
/ | | |
/ | | | |
/ | | | |
A /______|____|___|__| C
*/
private int[] CalculatePartitions(int partitionCount, int sourceLength)
{
// Corresponds to the opposite side of angle A, which corresponds
// to an index into the source array.
int[] partitionLimits = new int[partitionCount];
partitionLimits[0] = 0;
// Represent total work as rectangle of source length times "most expensive element"
// Note: RateOfIncrease can be factored out of equation.
double totalWork = sourceLength * (sourceLength * rateOfIncrease);
// Divide by two to get the triangle whose slope goes from zero on the left to "most"
// on the right. Then divide by number of partitions to get area of each partition.
totalWork /= 2;
double partitionArea = totalWork / partitionCount;
// Draw the next partitionLimit on the vertical coordinate that gives
// an area of partitionArea * currentPartition.
for (int i = 1; i < partitionLimits.Length; i++)
{
double area = partitionArea * i;
// Solve for base given the area and the slope of the hypotenuse.
partitionLimits[i] = (int)Math.Floor(Math.Sqrt((2 * area) / rateOfIncrease));
}
return partitionLimits;
}
IEnumerator<int> GetItemsForPartition(int start, int end)
{
// For demonstration purposes. Each thread receives its own enumerator.
Console.WriteLine("called on thread {0}", Thread.CurrentThread.ManagedThreadId);
for (int i = start; i < end; i++)
yield return source[i];
}
}
class Consumer
{
public static void Main2()
{
var source = Enumerable.Range(0, 10000).ToArray();
Stopwatch sw = Stopwatch.StartNew();
MyPartitioner partitioner = new MyPartitioner(source, .5);
var query = from n in partitioner.AsParallel()
select ProcessData(n);
foreach (var v in query) { }
Console.WriteLine("Processing time with custom partitioner {0}", sw.ElapsedMilliseconds);
var source2 = Enumerable.Range(0, 10000).ToArray();
sw = Stopwatch.StartNew();
var query2 = from n in source2.AsParallel()
select ProcessData(n);
foreach (var v in query2) { }
Console.WriteLine("Processing time with default partitioner {0}", sw.ElapsedMilliseconds);
}
// Consistent processing time for measurement purposes.
static int ProcessData(int i)
{
Thread.SpinWait(i * 1000);
return i;
}
}
Bei den Partitionen in diesem Beispiel wird ein linearer Anstieg der Verarbeitungszeit für jedes Element vorausgesetzt. In der Realität kann es schwierig sein, Verarbeitungszeiten auf diese Weise vorherzusagen. Bei Verwendung eines statischen Partitionierers mit einer bestimmten Datenquelle können Sie die Partitionierungsformel für die Quelle optimieren, Lastenausgleichslogik hinzufügen oder einen Blockpartitionierungansatz wie in Gewusst wie: Implementieren von dynamischen Partitionen beschrieben verwenden.