TreeExtensions.FeaturizeByFastForestRegression Methode
Definition
Wichtig
Einige Informationen beziehen sich auf Vorabversionen, die vor dem Release ggf. grundlegend überarbeitet werden. Microsoft übernimmt hinsichtlich der hier bereitgestellten Informationen keine Gewährleistungen, seien sie ausdrücklich oder konkludent.
Erstellen Sie , die zum Trainieren FastForestRegressionFeaturizationEstimatorverwendet FastForestRegressionTrainer wird TreeEnsembleModelParameters , um strukturbasierte Features zu erstellen.
public static Microsoft.ML.Trainers.FastTree.FastForestRegressionFeaturizationEstimator FeaturizeByFastForestRegression (this Microsoft.ML.TransformsCatalog catalog, Microsoft.ML.Trainers.FastTree.FastForestRegressionFeaturizationEstimator.Options options);
static member FeaturizeByFastForestRegression : Microsoft.ML.TransformsCatalog * Microsoft.ML.Trainers.FastTree.FastForestRegressionFeaturizationEstimator.Options -> Microsoft.ML.Trainers.FastTree.FastForestRegressionFeaturizationEstimator
<Extension()>
Public Function FeaturizeByFastForestRegression (catalog As TransformsCatalog, options As FastForestRegressionFeaturizationEstimator.Options) As FastForestRegressionFeaturizationEstimator
Parameter
- catalog
- TransformsCatalog
Der zu erstellende PretrainedTreeFeaturizationEstimatorKontext TransformsCatalog .
Die Zu konfigurierenden FastForestRegressionFeaturizationEstimatorOptionen . Weitere Informationen finden Sie unter FastForestRegressionFeaturizationEstimator.Options und TreeEnsembleFeaturizationEstimatorBase.OptionsBase für verfügbare Einstellungen.
Gibt zurück
Beispiele
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Trainers.FastTree;
namespace Samples.Dynamic.Transforms.TreeFeaturization
{
public static class FastForestRegressionFeaturizationWithOptions
{
// This example requires installation of additional NuGet package
// <a href="https://www.nuget.org/packages/Microsoft.ML.FastTree/">Microsoft.ML.FastTree</a>.
public static void Example()
{
// Create a new context for ML.NET operations. It can be used for
// exception tracking and logging, as a catalog of available operations
// and as the source of randomness. Setting the seed to a fixed number
// in this example to make outputs deterministic.
var mlContext = new MLContext(seed: 0);
// Create a list of training data points.
var dataPoints = GenerateRandomDataPoints(100).ToList();
// Convert the list of data points to an IDataView object, which is
// consumable by ML.NET API.
var dataView = mlContext.Data.LoadFromEnumerable(dataPoints);
// ML.NET doesn't cache data set by default. Therefore, if one reads a
// data set from a file and accesses it many times, it can be slow due
// to expensive featurization and disk operations. When the considered
// data can fit into memory, a solution is to cache the data in memory.
// Caching is especially helpful when working with iterative algorithms
// which needs many data passes.
dataView = mlContext.Data.Cache(dataView);
// Define input and output columns of tree-based featurizer.
string labelColumnName = nameof(DataPoint.Label);
string featureColumnName = nameof(DataPoint.Features);
string treesColumnName = nameof(TransformedDataPoint.Trees);
string leavesColumnName = nameof(TransformedDataPoint.Leaves);
string pathsColumnName = nameof(TransformedDataPoint.Paths);
// Define the configuration of the trainer used to train a tree-based
// model.
var trainerOptions = new FastForestRegressionTrainer.Options
{
// Only use 80% of features to reduce over-fitting.
FeatureFraction = 0.8,
// Create a simpler model by penalizing usage of new features.
FeatureFirstUsePenalty = 0.1,
// Reduce the number of trees to 3.
NumberOfTrees = 3,
// Number of leaves per tree.
NumberOfLeaves = 6,
LabelColumnName = labelColumnName,
FeatureColumnName = featureColumnName
};
// Define the tree-based featurizer's configuration.
var options = new FastForestRegressionFeaturizationEstimator.Options
{
InputColumnName = featureColumnName,
TreesColumnName = treesColumnName,
LeavesColumnName = leavesColumnName,
PathsColumnName = pathsColumnName,
TrainerOptions = trainerOptions
};
// Define the featurizer.
var pipeline = mlContext.Transforms.FeaturizeByFastForestRegression(
options);
// Train the model.
var model = pipeline.Fit(dataView);
// Create testing data. Use different random seed to make it different
// from training data.
var transformed = model.Transform(dataView);
// Convert IDataView object to a list. Each element in the resulted list
// corresponds to a row in the IDataView.
var transformedDataPoints = mlContext.Data.CreateEnumerable<
TransformedDataPoint>(transformed, false).ToList();
// Print out the transformation of the first 3 data points.
for (int i = 0; i < 3; ++i)
{
var dataPoint = dataPoints[i];
var transformedDataPoint = transformedDataPoints[i];
Console.WriteLine("The original feature vector [" + String.Join(",",
dataPoint.Features) + "] is transformed to three different " +
"tree-based feature vectors:");
Console.WriteLine(" Trees' output values: [" + String.Join(",",
transformedDataPoint.Trees) + "].");
Console.WriteLine(" Leave IDs' 0-1 representation: [" + String
.Join(",", transformedDataPoint.Leaves) + "].");
Console.WriteLine(" Paths IDs' 0-1 representation: [" + String
.Join(",", transformedDataPoint.Paths) + "].");
}
// Expected output:
// The original feature vector[1.543569, 1.494266, 1.284405] is
// transformed to three different tree - based feature vectors:
// Trees' output values: [0.7291142,0.7825329,0.8764582].
// Leave IDs' 0-1 representation: [0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0].
// Paths IDs' 0-1 representation: [1,0,0,0,1,1,1,0,0,1,1,1,0,1].
// The original feature vector[0.764918, 1.11206, 0.648211] is
// transformed to three different tree - based feature vectors:
// Trees' output values: [0.3802337,0.584159,0.5648927].
// Leave IDs' 0-1 representation: [0,0,1,0,0,0,0,1,0,0,0,0,0,1,0,0,0].
// Paths IDs' 0-1 representation: [1,1,1,0,0,1,1,0,0,0,1,1,0,0].
// The original feature vector[1.251254, 1.269456, 1.444864] is
// transformed to three different tree - based feature vectors:
// Trees' output values: [0.7591804,0.7825329,0.7443035].
// Leave IDs' 0-1 representation: [0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1].
// Paths IDs' 0-1 representation: [1,0,0,0,1,1,1,0,0,1,1,1,0,1].
}
private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
int seed = 0)
{
var random = new Random(seed);
for (int i = 0; i < count; i++)
{
float label = (float)random.NextDouble();
yield return new DataPoint
{
Label = label,
// Create random features that are correlated with the label.
Features = Enumerable.Repeat(label, 3).Select(x => x +
(float)random.NextDouble()).ToArray()
};
}
}
// Example with label and 50 feature values. A data set is a collection of
// such examples.
private class DataPoint
{
public float Label { get; set; }
[VectorType(3)]
public float[] Features { get; set; }
}
// Class used to capture the output of tree-base featurization.
private class TransformedDataPoint : DataPoint
{
// The i-th value is the output value of the i-th decision tree.
public float[] Trees { get; set; }
// The 0-1 encoding of leaves the input feature vector falls into.
public float[] Leaves { get; set; }
// The 0-1 encoding of paths the input feature vector reaches the
// leaves.
public float[] Paths { get; set; }
}
}
}