Freigeben über


TimeSeriesCatalog.DetectChangePointBySsa Methode

Definition

Überlädt

DetectChangePointBySsa(TransformsCatalog, String, String, Double, Int32, Int32, Int32, ErrorFunction, MartingaleType, Double)

Erstellen Sie SsaChangePointEstimator, die Änderungspunkte in der Zeitreihe mit Singular Spectrum Analysis (SSA) vorhersagt.

DetectChangePointBySsa(TransformsCatalog, String, String, Int32, Int32, Int32, Int32, ErrorFunction, MartingaleType, Double)
Veraltet.

Erstellen Sie SsaChangePointEstimator, die Änderungspunkte in der Zeitreihe mit Singular Spectrum Analysis (SSA) vorhersagt.

DetectChangePointBySsa(TransformsCatalog, String, String, Double, Int32, Int32, Int32, ErrorFunction, MartingaleType, Double)

Erstellen Sie SsaChangePointEstimator, die Änderungspunkte in der Zeitreihe mit Singular Spectrum Analysis (SSA) vorhersagt.

public static Microsoft.ML.Transforms.TimeSeries.SsaChangePointEstimator DetectChangePointBySsa (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName, double confidence, int changeHistoryLength, int trainingWindowSize, int seasonalityWindowSize, Microsoft.ML.Transforms.TimeSeries.ErrorFunction errorFunction = Microsoft.ML.Transforms.TimeSeries.ErrorFunction.SignedDifference, Microsoft.ML.Transforms.TimeSeries.MartingaleType martingale = Microsoft.ML.Transforms.TimeSeries.MartingaleType.Power, double eps = 0.1);
static member DetectChangePointBySsa : Microsoft.ML.TransformsCatalog * string * string * double * int * int * int * Microsoft.ML.Transforms.TimeSeries.ErrorFunction * Microsoft.ML.Transforms.TimeSeries.MartingaleType * double -> Microsoft.ML.Transforms.TimeSeries.SsaChangePointEstimator
<Extension()>
Public Function DetectChangePointBySsa (catalog As TransformsCatalog, outputColumnName As String, inputColumnName As String, confidence As Double, changeHistoryLength As Integer, trainingWindowSize As Integer, seasonalityWindowSize As Integer, Optional errorFunction As ErrorFunction = Microsoft.ML.Transforms.TimeSeries.ErrorFunction.SignedDifference, Optional martingale As MartingaleType = Microsoft.ML.Transforms.TimeSeries.MartingaleType.Power, Optional eps As Double = 0.1) As SsaChangePointEstimator

Parameter

catalog
TransformsCatalog

Der Katalog der Transformation.

outputColumnName
String

Name der Spalte, die aus der Transformation von inputColumnName. Die Spaltendaten sind ein Vektor von Double. Der Vektor enthält 4 Elemente: Warnung (Nicht-Null-Wert bedeutet einen Änderungspunkt), unformatierte Bewertung, p-Value- und Martingale-Score.

inputColumnName
String

Name der Spalte, die transformiert werden soll. Die Spaltendaten müssen Singlesein. nullWenn festgelegt auf , wird der Wert des outputColumnName Werts als Quelle verwendet.

confidence
Double

Die Konfidenz für die Änderungspunkterkennung im Bereich [0, 100].

changeHistoryLength
Int32

Die Größe des gleitenden Fensters für das Berechnen des P-Werts.

trainingWindowSize
Int32

Die Anzahl der Punkte vom Anfang der Sequenz, die für die Schulung verwendet wird.

seasonalityWindowSize
Int32

Eine obere Grenze für die größte relevante Saisonalität in der Eingabezeitreihe.

errorFunction
ErrorFunction

Die Funktion, die zum Berechnen des Fehlers zwischen dem erwarteten und dem beobachteten Wert verwendet wird.

martingale
MartingaleType

Die Martingale, die für die Bewertung verwendet wird.

eps
Double

Der epsilon-Parameter für die Power martingale.

Gibt zurück

Beispiele

using System;
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.Data;

namespace Samples.Dynamic
{
    public static class DetectChangePointBySsaBatchPrediction
    {
        // This example creates a time series (list of Data with the i-th element
        // corresponding to the i-th time slot). The estimator is applied then to
        // identify points where data distribution changed. This estimator can
        // account for temporal seasonality in the data.
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var ml = new MLContext();

            // Generate sample series data with a recurring pattern and then a
            // change in trend
            const int SeasonalitySize = 5;
            const int TrainingSeasons = 3;
            const int TrainingSize = SeasonalitySize * TrainingSeasons;
            var data = new List<TimeSeriesData>()
            {
                new TimeSeriesData(0),
                new TimeSeriesData(1),
                new TimeSeriesData(2),
                new TimeSeriesData(3),
                new TimeSeriesData(4),

                new TimeSeriesData(0),
                new TimeSeriesData(1),
                new TimeSeriesData(2),
                new TimeSeriesData(3),
                new TimeSeriesData(4),

                new TimeSeriesData(0),
                new TimeSeriesData(1),
                new TimeSeriesData(2),
                new TimeSeriesData(3),
                new TimeSeriesData(4),

                //This is a change point
                new TimeSeriesData(0),
                new TimeSeriesData(100),
                new TimeSeriesData(200),
                new TimeSeriesData(300),
                new TimeSeriesData(400),
            };

            // Convert data to IDataView.
            var dataView = ml.Data.LoadFromEnumerable(data);

            // Setup estimator arguments
            var inputColumnName = nameof(TimeSeriesData.Value);
            var outputColumnName = nameof(ChangePointPrediction.Prediction);

            // The transformed data.
            var transformedData = ml.Transforms.DetectChangePointBySsa(
                outputColumnName, inputColumnName, 95.0d, 8, TrainingSize,
                SeasonalitySize + 1).Fit(dataView).Transform(dataView);

            // Getting the data of the newly created column as an IEnumerable of
            // ChangePointPrediction.
            var predictionColumn = ml.Data.CreateEnumerable<ChangePointPrediction>(
                transformedData, reuseRowObject: false);

            Console.WriteLine(outputColumnName + " column obtained " +
                "post-transformation.");

            Console.WriteLine("Data\tAlert\tScore\tP-Value\tMartingale value");
            int k = 0;
            foreach (var prediction in predictionColumn)
                PrintPrediction(data[k++].Value, prediction);

            // Prediction column obtained post-transformation.
            // Data    Alert   Score   P-Value Martingale value
            // 0       0      -2.53    0.50    0.00
            // 1       0      -0.01    0.01    0.00
            // 2       0       0.76    0.14    0.00
            // 3       0       0.69    0.28    0.00
            // 4       0       1.44    0.18    0.00
            // 0       0      -1.84    0.17    0.00
            // 1       0       0.22    0.44    0.00
            // 2       0       0.20    0.45    0.00
            // 3       0       0.16    0.47    0.00
            // 4       0       1.33    0.18    0.00
            // 0       0      -1.79    0.07    0.00
            // 1       0       0.16    0.50    0.00
            // 2       0       0.09    0.50    0.00
            // 3       0       0.08    0.45    0.00
            // 4       0       1.31    0.12    0.00
            // 0       0      -1.79    0.07    0.00
            // 100     1      99.16    0.00    4031.94     <-- alert is on, predicted changepoint
            // 200     0     185.23    0.00    731260.87
            // 300     0     270.40    0.01    3578470.47
            // 400     0     357.11    0.03    45298370.86
        }

        private static void PrintPrediction(float value, ChangePointPrediction
            prediction) =>
            Console.WriteLine("{0}\t{1}\t{2:0.00}\t{3:0.00}\t{4:0.00}", value,
            prediction.Prediction[0], prediction.Prediction[1],
            prediction.Prediction[2], prediction.Prediction[3]);

        class ChangePointPrediction
        {
            [VectorType(4)]
            public double[] Prediction { get; set; }
        }

        class TimeSeriesData
        {
            public float Value;

            public TimeSeriesData(float value)
            {
                Value = value;
            }
        }
    }
}

Gilt für:

DetectChangePointBySsa(TransformsCatalog, String, String, Int32, Int32, Int32, Int32, ErrorFunction, MartingaleType, Double)

Achtung

This API method is deprecated, please use the overload with confidence parameter of type double.

Erstellen Sie SsaChangePointEstimator, die Änderungspunkte in der Zeitreihe mit Singular Spectrum Analysis (SSA) vorhersagt.

[System.Obsolete("This API method is deprecated, please use the overload with confidence parameter of type double.")]
public static Microsoft.ML.Transforms.TimeSeries.SsaChangePointEstimator DetectChangePointBySsa (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName, int confidence, int changeHistoryLength, int trainingWindowSize, int seasonalityWindowSize, Microsoft.ML.Transforms.TimeSeries.ErrorFunction errorFunction = Microsoft.ML.Transforms.TimeSeries.ErrorFunction.SignedDifference, Microsoft.ML.Transforms.TimeSeries.MartingaleType martingale = Microsoft.ML.Transforms.TimeSeries.MartingaleType.Power, double eps = 0.1);
public static Microsoft.ML.Transforms.TimeSeries.SsaChangePointEstimator DetectChangePointBySsa (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName, int confidence, int changeHistoryLength, int trainingWindowSize, int seasonalityWindowSize, Microsoft.ML.Transforms.TimeSeries.ErrorFunction errorFunction = Microsoft.ML.Transforms.TimeSeries.ErrorFunction.SignedDifference, Microsoft.ML.Transforms.TimeSeries.MartingaleType martingale = Microsoft.ML.Transforms.TimeSeries.MartingaleType.Power, double eps = 0.1);
[<System.Obsolete("This API method is deprecated, please use the overload with confidence parameter of type double.")>]
static member DetectChangePointBySsa : Microsoft.ML.TransformsCatalog * string * string * int * int * int * int * Microsoft.ML.Transforms.TimeSeries.ErrorFunction * Microsoft.ML.Transforms.TimeSeries.MartingaleType * double -> Microsoft.ML.Transforms.TimeSeries.SsaChangePointEstimator
static member DetectChangePointBySsa : Microsoft.ML.TransformsCatalog * string * string * int * int * int * int * Microsoft.ML.Transforms.TimeSeries.ErrorFunction * Microsoft.ML.Transforms.TimeSeries.MartingaleType * double -> Microsoft.ML.Transforms.TimeSeries.SsaChangePointEstimator
<Extension()>
Public Function DetectChangePointBySsa (catalog As TransformsCatalog, outputColumnName As String, inputColumnName As String, confidence As Integer, changeHistoryLength As Integer, trainingWindowSize As Integer, seasonalityWindowSize As Integer, Optional errorFunction As ErrorFunction = Microsoft.ML.Transforms.TimeSeries.ErrorFunction.SignedDifference, Optional martingale As MartingaleType = Microsoft.ML.Transforms.TimeSeries.MartingaleType.Power, Optional eps As Double = 0.1) As SsaChangePointEstimator

Parameter

catalog
TransformsCatalog

Der Katalog der Transformation.

outputColumnName
String

Name der Spalte, die aus der Transformation von inputColumnName. Die Spaltendaten sind ein Vektor von Double. Der Vektor enthält 4 Elemente: Warnung (Nicht-Null-Wert bedeutet einen Änderungspunkt), unformatierte Bewertung, p-Value- und Martingale-Score.

inputColumnName
String

Name der Spalte, die transformiert werden soll. Die Spaltendaten müssen Singlesein. nullWenn festgelegt auf , wird der Wert des outputColumnName Werts als Quelle verwendet.

confidence
Int32

Die Konfidenz für die Änderungspunkterkennung im Bereich [0, 100].

changeHistoryLength
Int32

Die Größe des gleitenden Fensters für das Berechnen des P-Werts.

trainingWindowSize
Int32

Die Anzahl der Punkte vom Anfang der Sequenz, die für die Schulung verwendet wird.

seasonalityWindowSize
Int32

Eine obere Grenze für die größte relevante Saisonalität in der Eingabezeitreihe.

errorFunction
ErrorFunction

Die Funktion, die zum Berechnen des Fehlers zwischen dem erwarteten und dem beobachteten Wert verwendet wird.

martingale
MartingaleType

Die Martingale, die für die Bewertung verwendet wird.

eps
Double

Der epsilon-Parameter für die Power martingale.

Gibt zurück

Attribute

Beispiele

using System;
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.Data;

namespace Samples.Dynamic
{
    public static class DetectChangePointBySsaBatchPrediction
    {
        // This example creates a time series (list of Data with the i-th element
        // corresponding to the i-th time slot). The estimator is applied then to
        // identify points where data distribution changed. This estimator can
        // account for temporal seasonality in the data.
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var ml = new MLContext();

            // Generate sample series data with a recurring pattern and then a
            // change in trend
            const int SeasonalitySize = 5;
            const int TrainingSeasons = 3;
            const int TrainingSize = SeasonalitySize * TrainingSeasons;
            var data = new List<TimeSeriesData>()
            {
                new TimeSeriesData(0),
                new TimeSeriesData(1),
                new TimeSeriesData(2),
                new TimeSeriesData(3),
                new TimeSeriesData(4),

                new TimeSeriesData(0),
                new TimeSeriesData(1),
                new TimeSeriesData(2),
                new TimeSeriesData(3),
                new TimeSeriesData(4),

                new TimeSeriesData(0),
                new TimeSeriesData(1),
                new TimeSeriesData(2),
                new TimeSeriesData(3),
                new TimeSeriesData(4),

                //This is a change point
                new TimeSeriesData(0),
                new TimeSeriesData(100),
                new TimeSeriesData(200),
                new TimeSeriesData(300),
                new TimeSeriesData(400),
            };

            // Convert data to IDataView.
            var dataView = ml.Data.LoadFromEnumerable(data);

            // Setup estimator arguments
            var inputColumnName = nameof(TimeSeriesData.Value);
            var outputColumnName = nameof(ChangePointPrediction.Prediction);

            // The transformed data.
            var transformedData = ml.Transforms.DetectChangePointBySsa(
                outputColumnName, inputColumnName, 95.0d, 8, TrainingSize,
                SeasonalitySize + 1).Fit(dataView).Transform(dataView);

            // Getting the data of the newly created column as an IEnumerable of
            // ChangePointPrediction.
            var predictionColumn = ml.Data.CreateEnumerable<ChangePointPrediction>(
                transformedData, reuseRowObject: false);

            Console.WriteLine(outputColumnName + " column obtained " +
                "post-transformation.");

            Console.WriteLine("Data\tAlert\tScore\tP-Value\tMartingale value");
            int k = 0;
            foreach (var prediction in predictionColumn)
                PrintPrediction(data[k++].Value, prediction);

            // Prediction column obtained post-transformation.
            // Data    Alert   Score   P-Value Martingale value
            // 0       0      -2.53    0.50    0.00
            // 1       0      -0.01    0.01    0.00
            // 2       0       0.76    0.14    0.00
            // 3       0       0.69    0.28    0.00
            // 4       0       1.44    0.18    0.00
            // 0       0      -1.84    0.17    0.00
            // 1       0       0.22    0.44    0.00
            // 2       0       0.20    0.45    0.00
            // 3       0       0.16    0.47    0.00
            // 4       0       1.33    0.18    0.00
            // 0       0      -1.79    0.07    0.00
            // 1       0       0.16    0.50    0.00
            // 2       0       0.09    0.50    0.00
            // 3       0       0.08    0.45    0.00
            // 4       0       1.31    0.12    0.00
            // 0       0      -1.79    0.07    0.00
            // 100     1      99.16    0.00    4031.94     <-- alert is on, predicted changepoint
            // 200     0     185.23    0.00    731260.87
            // 300     0     270.40    0.01    3578470.47
            // 400     0     357.11    0.03    45298370.86
        }

        private static void PrintPrediction(float value, ChangePointPrediction
            prediction) =>
            Console.WriteLine("{0}\t{1}\t{2:0.00}\t{3:0.00}\t{4:0.00}", value,
            prediction.Prediction[0], prediction.Prediction[1],
            prediction.Prediction[2], prediction.Prediction[3]);

        class ChangePointPrediction
        {
            [VectorType(4)]
            public double[] Prediction { get; set; }
        }

        class TimeSeriesData
        {
            public float Value;

            public TimeSeriesData(float value)
            {
                Value = value;
            }
        }
    }
}

Gilt für: