Freigeben über


NormalizationCatalog.NormalizeSupervisedBinning Methode

Definition

Überlädt

NormalizeSupervisedBinning(TransformsCatalog, InputOutputColumnPair[], String, Int64, Boolean, Int32, Int32)

Erstellen Sie einen NormalizingEstimator, der die Daten normalisiert, indem Sie die Daten basierend auf der Korrelation mit der labelColumnName Spalte zuweisen.

NormalizeSupervisedBinning(TransformsCatalog, String, String, String, Int64, Boolean, Int32, Int32)

Erstellen Sie einen NormalizingEstimator, der die Daten normalisiert, indem Sie die Daten basierend auf der Korrelation mit der labelColumnName Spalte zuweisen.

NormalizeSupervisedBinning(TransformsCatalog, InputOutputColumnPair[], String, Int64, Boolean, Int32, Int32)

Erstellen Sie einen NormalizingEstimator, der die Daten normalisiert, indem Sie die Daten basierend auf der Korrelation mit der labelColumnName Spalte zuweisen.

public static Microsoft.ML.Transforms.NormalizingEstimator NormalizeSupervisedBinning (this Microsoft.ML.TransformsCatalog catalog, Microsoft.ML.InputOutputColumnPair[] columns, string labelColumnName = "Label", long maximumExampleCount = 1000000000, bool fixZero = true, int maximumBinCount = 1024, int mininimumExamplesPerBin = 10);
static member NormalizeSupervisedBinning : Microsoft.ML.TransformsCatalog * Microsoft.ML.InputOutputColumnPair[] * string * int64 * bool * int * int -> Microsoft.ML.Transforms.NormalizingEstimator
<Extension()>
Public Function NormalizeSupervisedBinning (catalog As TransformsCatalog, columns As InputOutputColumnPair(), Optional labelColumnName As String = "Label", Optional maximumExampleCount As Long = 1000000000, Optional fixZero As Boolean = true, Optional maximumBinCount As Integer = 1024, Optional mininimumExamplesPerBin As Integer = 10) As NormalizingEstimator

Parameter

catalog
TransformsCatalog

Der Transformationskatalog

columns
InputOutputColumnPair[]

Die Paare der Eingabe- und Ausgabespalten. Die Eingabespalten müssen vom Datentyp SingleDouble oder einem bekannten Vektor dieser Typen sein. Der Datentyp für die Ausgabespalte entspricht der zugeordneten Eingabespalte.

labelColumnName
String

Name der Beschriftungsspalte für überwachte Binning.

maximumExampleCount
Int64

Maximale Anzahl von Beispielen, die zum Trainieren des Normalizers verwendet werden.

fixZero
Boolean

Gibt an, ob null bis null zugeordnet werden soll, wobei die Sparsität erhalten bleibt.

maximumBinCount
Int32

Maximale Anzahl von Bins (Leistung von 2 empfohlen).

mininimumExamplesPerBin
Int32

Mindestanzahl von Beispielen pro Bin.

Gibt zurück

Gilt für:

NormalizeSupervisedBinning(TransformsCatalog, String, String, String, Int64, Boolean, Int32, Int32)

Erstellen Sie einen NormalizingEstimator, der die Daten normalisiert, indem Sie die Daten basierend auf der Korrelation mit der labelColumnName Spalte zuweisen.

public static Microsoft.ML.Transforms.NormalizingEstimator NormalizeSupervisedBinning (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName = default, string labelColumnName = "Label", long maximumExampleCount = 1000000000, bool fixZero = true, int maximumBinCount = 1024, int mininimumExamplesPerBin = 10);
static member NormalizeSupervisedBinning : Microsoft.ML.TransformsCatalog * string * string * string * int64 * bool * int * int -> Microsoft.ML.Transforms.NormalizingEstimator
<Extension()>
Public Function NormalizeSupervisedBinning (catalog As TransformsCatalog, outputColumnName As String, Optional inputColumnName As String = Nothing, Optional labelColumnName As String = "Label", Optional maximumExampleCount As Long = 1000000000, Optional fixZero As Boolean = true, Optional maximumBinCount As Integer = 1024, Optional mininimumExamplesPerBin As Integer = 10) As NormalizingEstimator

Parameter

catalog
TransformsCatalog

Der Transformationskatalog

outputColumnName
String

Name der Spalte, die aus der Transformation von inputColumnName. Der Datentyp in dieser Spalte entspricht der Eingabespalte.

inputColumnName
String

Name der zu transformierenden Spalte. Wenn dieser Wert als nullQuelle festgelegt ist, wird der Wert des Werts outputColumnName als Quelle verwendet. Der Datentyp in dieser Spalte sollte ein bekannter Vektor dieser Typen seinSingleDouble.

labelColumnName
String

Name der Beschriftungsspalte für überwachte Binning.

maximumExampleCount
Int64

Maximale Anzahl von Beispielen, die zum Trainieren des Normalizers verwendet werden.

fixZero
Boolean

Gibt an, ob null bis null zugeordnet werden soll, wobei die Sparsität erhalten bleibt.

maximumBinCount
Int32

Maximale Anzahl von Bins (Leistung von 2 empfohlen).

mininimumExamplesPerBin
Int32

Mindestanzahl von Beispielen pro Bin.

Gibt zurück

Beispiele

using System;
using System.Collections.Generic;
using System.Collections.Immutable;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using static Microsoft.ML.Transforms.NormalizingTransformer;

namespace Samples.Dynamic
{
    public class NormalizeSupervisedBinning
    {
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var mlContext = new MLContext();
            var samples = new List<DataPoint>()
            {
                new DataPoint(){ Features = new float[4] { 8, 1, 3, 0},
                    Bin ="Bin1" },

                new DataPoint(){ Features = new float[4] { 6, 2, 2, 1},
                    Bin ="Bin2" },

                new DataPoint(){ Features = new float[4] { 5, 3, 0, 2},
                    Bin ="Bin2" },

                new DataPoint(){ Features = new float[4] { 4,-8, 1, 3},
                    Bin ="Bin3" },

                new DataPoint(){ Features = new float[4] { 2,-5,-1, 4},
                    Bin ="Bin3" }
            };
            // Convert training data to IDataView, the general data type used in
            // ML.NET.
            var data = mlContext.Data.LoadFromEnumerable(samples);
            // Let's transform "Bin" column from string to key.
            data = mlContext.Transforms.Conversion.MapValueToKey("Bin").Fit(data)
                .Transform(data);
            // NormalizeSupervisedBinning normalizes the data by constructing bins
            // based on correlation with the label column and produce output based
            // on to which bin original value belong.
            var normalize = mlContext.Transforms.NormalizeSupervisedBinning(
                "Features", labelColumnName: "Bin", mininimumExamplesPerBin: 1,
                fixZero: false);

            // NormalizeSupervisedBinning normalizes the data by constructing bins
            // based on correlation with the label column and produce output based
            // on to which bin original value belong but make sure zero values would
            // remain zero after normalization. Helps preserve sparsity.
            var normalizeFixZero = mlContext.Transforms.NormalizeSupervisedBinning(
                "Features", labelColumnName: "Bin", mininimumExamplesPerBin: 1,
                fixZero: true);

            // Now we can transform the data and look at the output to confirm the
            // behavior of the estimator. This operation doesn't actually evaluate
            // data until we read the data below.
            var normalizeTransform = normalize.Fit(data);
            var transformedData = normalizeTransform.Transform(data);
            var normalizeFixZeroTransform = normalizeFixZero.Fit(data);
            var fixZeroData = normalizeFixZeroTransform.Transform(data);
            var column = transformedData.GetColumn<float[]>("Features").ToArray();
            foreach (var row in column)
                Console.WriteLine(string.Join(", ", row.Select(x => x.ToString(
                    "f4"))));
            // Expected output:
            //  1.0000, 0.5000, 1.0000, 0.0000
            //  0.5000, 1.0000, 0.0000, 0.5000
            //  0.5000, 1.0000, 0.0000, 0.5000
            //  0.0000, 0.0000, 0.0000, 1.0000
            //  0.0000, 0.0000, 0.0000, 1.0000

            var columnFixZero = fixZeroData.GetColumn<float[]>("Features")
                .ToArray();

            foreach (var row in columnFixZero)
                Console.WriteLine(string.Join(", ", row.Select(x => x.ToString(
                    "f4"))));
            // Expected output:
            //  1.0000, 0.0000, 1.0000, 0.0000
            //  0.5000, 0.5000, 0.0000, 0.5000
            //  0.5000, 0.5000, 0.0000, 0.5000
            //  0.0000,-0.5000, 0.0000, 1.0000
            //  0.0000,-0.5000, 0.0000, 1.0000

            // Let's get transformation parameters. Since we work with only one
            // column we need to pass 0 as parameter for
            // GetNormalizerModelParameters.
            // If we have multiple columns transformations we need to pass index of
            // InputOutputColumnPair.
            var transformParams = normalizeTransform.GetNormalizerModelParameters(0)
                as BinNormalizerModelParameters<ImmutableArray<float>>;

            Console.WriteLine($"The 1-index value in resulting array would be " +
                $"produce by:");

            Console.WriteLine("y = (Index(x) / " + transformParams.Density[0] +
                ") - " + (transformParams.Offset.Length == 0 ? 0 : transformParams
                .Offset[0]));

            Console.WriteLine("Where Index(x) is the index of the bin to which " +
                "x belongs");

            Console.WriteLine("Bins upper borders are: " + string.Join(" ",
                transformParams.UpperBounds[0]));
            // Expected output:
            //  The 1-index value in resulting array would be produce by:
            //  y = (Index(x) / 2) - 0
            //  Where Index(x) is the index of the bin to which x belongs
            //  Bins upper bounds are: 4.5 7 ∞

            var fixZeroParams = normalizeFixZeroTransform
                .GetNormalizerModelParameters(0) as BinNormalizerModelParameters<
                ImmutableArray<float>>;

            Console.WriteLine($"The 1-index value in resulting array would be " +
                $"produce by:");

            Console.WriteLine(" y = (Index(x) / " + fixZeroParams.Density[1] +
                ") - " + (fixZeroParams.Offset.Length == 0 ? 0 : fixZeroParams
                .Offset[1]));

            Console.WriteLine("Where Index(x) is the index of the bin to which x " +
                "belongs");

            Console.WriteLine("Bins upper borders are: " + string.Join(" ",
                fixZeroParams.UpperBounds[1]));
            // Expected output:
            //  The 1-index value in resulting array would be produce by:
            //  y = (Index(x) / 2) - 0.5
            //  Where Index(x) is the index of the bin to which x belongs
            //  Bins upper bounds are: -2 1.5 ∞
        }

        private class DataPoint
        {
            [VectorType(4)]
            public float[] Features { get; set; }

            public string Bin { get; set; }
        }
    }
}

Gilt für: