Freigeben über


NormalizationCatalog.NormalizeMeanVariance Methode

Definition

Überlädt

NormalizeMeanVariance(TransformsCatalog, InputOutputColumnPair[], Int64, Boolean, Boolean)

Erstellen Sie eine NormalizingEstimator, die basierend auf der berechneten Mittel- und Varianz der Daten normalisiert.

NormalizeMeanVariance(TransformsCatalog, String, String, Int64, Boolean, Boolean)

Erstellen Sie eine NormalizingEstimator, die basierend auf der berechneten Mittel- und Varianz der Daten normalisiert.

NormalizeMeanVariance(TransformsCatalog, InputOutputColumnPair[], Int64, Boolean, Boolean)

Erstellen Sie eine NormalizingEstimator, die basierend auf der berechneten Mittel- und Varianz der Daten normalisiert.

public static Microsoft.ML.Transforms.NormalizingEstimator NormalizeMeanVariance (this Microsoft.ML.TransformsCatalog catalog, Microsoft.ML.InputOutputColumnPair[] columns, long maximumExampleCount = 1000000000, bool fixZero = true, bool useCdf = false);
static member NormalizeMeanVariance : Microsoft.ML.TransformsCatalog * Microsoft.ML.InputOutputColumnPair[] * int64 * bool * bool -> Microsoft.ML.Transforms.NormalizingEstimator
<Extension()>
Public Function NormalizeMeanVariance (catalog As TransformsCatalog, columns As InputOutputColumnPair(), Optional maximumExampleCount As Long = 1000000000, Optional fixZero As Boolean = true, Optional useCdf As Boolean = false) As NormalizingEstimator

Parameter

catalog
TransformsCatalog

Der Transformationskatalog

columns
InputOutputColumnPair[]

Die Paare der Eingabe- und Ausgabespalten. Die Eingabespalten müssen vom Datentyp SingleDouble oder einen bekannten Vektor dieser Typen sein. Der Datentyp für die Ausgabespalte entspricht der zugeordneten Eingabespalte.

maximumExampleCount
Int64

Maximale Anzahl von Beispielen, die zum Trainieren des Normalizers verwendet werden.

fixZero
Boolean

Ob Null bis Null zugeordnet werden soll, wobei die Sparsität beibehalten wird.

useCdf
Boolean

Ob CDF als Ausgabe verwendet werden soll.

Gibt zurück

Gilt für:

NormalizeMeanVariance(TransformsCatalog, String, String, Int64, Boolean, Boolean)

Erstellen Sie eine NormalizingEstimator, die basierend auf der berechneten Mittel- und Varianz der Daten normalisiert.

public static Microsoft.ML.Transforms.NormalizingEstimator NormalizeMeanVariance (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName = default, long maximumExampleCount = 1000000000, bool fixZero = true, bool useCdf = false);
static member NormalizeMeanVariance : Microsoft.ML.TransformsCatalog * string * string * int64 * bool * bool -> Microsoft.ML.Transforms.NormalizingEstimator
<Extension()>
Public Function NormalizeMeanVariance (catalog As TransformsCatalog, outputColumnName As String, Optional inputColumnName As String = Nothing, Optional maximumExampleCount As Long = 1000000000, Optional fixZero As Boolean = true, Optional useCdf As Boolean = false) As NormalizingEstimator

Parameter

catalog
TransformsCatalog

Der Transformationskatalog

outputColumnName
String

Name der Spalte, die aus der Transformation von inputColumnName. Der Datentyp in dieser Spalte entspricht der Eingabespalte.

inputColumnName
String

Name der zu transformierenden Spalte. nullWenn festgelegt auf , wird der Wert des outputColumnName Werts als Quelle verwendet. Der Datentyp dieser Spalte sollte oder ein bekannter Vektor dieser Typen seinSingleDouble.

maximumExampleCount
Int64

Maximale Anzahl von Beispielen, die zum Trainieren des Normalizers verwendet werden.

fixZero
Boolean

Ob Null bis Null zugeordnet werden soll, wobei die Sparsität beibehalten wird.

useCdf
Boolean

Ob CDF als Ausgabe verwendet werden soll.

Gibt zurück

Beispiele

using System;
using System.Collections.Generic;
using System.Collections.Immutable;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using static Microsoft.ML.Transforms.NormalizingTransformer;

namespace Samples.Dynamic
{
    public class NormalizeMeanVariance
    {
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var mlContext = new MLContext();
            var samples = new List<DataPoint>()
            {
                new DataPoint(){ Features = new float[4] { 1, 1, 3, 0} },
                new DataPoint(){ Features = new float[4] { 2, 2, 2, 0} },
                new DataPoint(){ Features = new float[4] { 0, 0, 1, 0} },
                new DataPoint(){ Features = new float[4] {-1,-1,-1, 1} }
            };
            // Convert training data to IDataView, the general data type used in
            // ML.NET.
            var data = mlContext.Data.LoadFromEnumerable(samples);
            // NormalizeMeanVariance normalizes the data based on the computed mean
            // and variance of the data. Uses Cumulative distribution function as
            // output.
            var normalize = mlContext.Transforms.NormalizeMeanVariance("Features",
                useCdf: true);

            // NormalizeMeanVariance normalizes the data based on the computed mean
            // and variance of the data.
            var normalizeNoCdf = mlContext.Transforms.NormalizeMeanVariance(
                "Features", useCdf: false);

            // Now we can transform the data and look at the output to confirm the
            // behavior of the estimator. This operation doesn't actually evaluate
            // data until we read the data below.
            var normalizeTransform = normalize.Fit(data);
            var transformedData = normalizeTransform.Transform(data);
            var normalizeNoCdfTransform = normalizeNoCdf.Fit(data);
            var noCdfData = normalizeNoCdfTransform.Transform(data);
            var column = transformedData.GetColumn<float[]>("Features").ToArray();
            foreach (var row in column)
                Console.WriteLine(string.Join(", ", row.Select(x => x.ToString(
                    "f4"))));
            // Expected output:
            //  0.6726, 0.6726, 0.8816, 0.2819
            //  0.9101, 0.9101, 0.6939, 0.2819
            //  0.3274, 0.3274, 0.4329, 0.2819
            //  0.0899, 0.0899, 0.0641, 0.9584


            var columnFixZero = noCdfData.GetColumn<float[]>("Features").ToArray();
            foreach (var row in columnFixZero)
                Console.WriteLine(string.Join(", ", row.Select(x => x.ToString(
                    "f4"))));
            // Expected output:
            //  0.8165, 0.8165, 1.5492, 0.0000
            //  1.6330, 1.6330, 1.0328, 0.0000
            //  0.0000, 0.0000, 0.5164, 0.0000
            // -0.8165,-0.8165,-0.5164, 2.0000

            // Let's get transformation parameters. Since we work with only one
            // column we need to pass 0 as parameter for
            // GetNormalizerModelParameters. If we have multiple columns
            // transformations we need to pass index of InputOutputColumnPair.
            var transformParams = normalizeTransform
                .GetNormalizerModelParameters(0) as CdfNormalizerModelParameters<
                ImmutableArray<float>>;

            Console.WriteLine($"The 1-index value in resulting array would " +
                $"be produce by:");

            Console.WriteLine(" y = 0.5* (1 + ERF((x- " + transformParams.Mean[1] +
                ") / (" + transformParams.StandardDeviation[1] + " * sqrt(2)))");
            // ERF is https://en.wikipedia.org/wiki/Error_function.
            // Expected output:
            //  The 1-index value in resulting array would be produce by:
            //  y = 0.5 * (1 + ERF((x - 0.5) / (1.118034 * sqrt(2)))

            var noCdfParams = normalizeNoCdfTransform
                .GetNormalizerModelParameters(0) as
                AffineNormalizerModelParameters<ImmutableArray<float>>;

            var offset = noCdfParams.Offset.Length == 0 ? 0 : noCdfParams.Offset[1];
            var scale = noCdfParams.Scale[1];
            Console.WriteLine($"Values for slot 1 would be transformed by " +
                $"applying y = (x - ({offset})) * {scale}");
            // Expected output:
            // The 1-index value in resulting array would be produce by: y = (x - (0)) * 0.8164966
        }

        private class DataPoint
        {
            [VectorType(4)]
            public float[] Features { get; set; }
        }
    }
}

Gilt für: