FeatureSelectionCatalog.SelectFeaturesBasedOnMutualInformation Methode
Definition
Wichtig
Einige Informationen beziehen sich auf Vorabversionen, die vor dem Release ggf. grundlegend überarbeitet werden. Microsoft übernimmt hinsichtlich der hier bereitgestellten Informationen keine Gewährleistungen, seien sie ausdrücklich oder konkludent.
Überlädt
SelectFeaturesBasedOnMutualInformation(TransformsCatalog+FeatureSelectionTransforms, InputOutputColumnPair[], String, Int32, Int32) |
Erstellen Sie einen MutualInformationFeatureSelectingEstimator, der die oberen K-Steckplätze über alle angegebenen Spalten auswählt, die durch ihre gegenseitigen Informationen mit der Bezeichnungsspalte angeordnet sind. |
SelectFeaturesBasedOnMutualInformation(TransformsCatalog+FeatureSelectionTransforms, String, String, String, Int32, Int32) |
Erstellen Sie einen MutualInformationFeatureSelectingEstimator, der die oberen K-Steckplätze über alle angegebenen Spalten auswählt, die durch ihre gegenseitigen Informationen mit der Bezeichnungsspalte angeordnet sind. |
SelectFeaturesBasedOnMutualInformation(TransformsCatalog+FeatureSelectionTransforms, InputOutputColumnPair[], String, Int32, Int32)
Erstellen Sie einen MutualInformationFeatureSelectingEstimator, der die oberen K-Steckplätze über alle angegebenen Spalten auswählt, die durch ihre gegenseitigen Informationen mit der Bezeichnungsspalte angeordnet sind.
public static Microsoft.ML.Transforms.MutualInformationFeatureSelectingEstimator SelectFeaturesBasedOnMutualInformation (this Microsoft.ML.TransformsCatalog.FeatureSelectionTransforms catalog, Microsoft.ML.InputOutputColumnPair[] columns, string labelColumnName = "Label", int slotsInOutput = 1000, int numberOfBins = 256);
static member SelectFeaturesBasedOnMutualInformation : Microsoft.ML.TransformsCatalog.FeatureSelectionTransforms * Microsoft.ML.InputOutputColumnPair[] * string * int * int -> Microsoft.ML.Transforms.MutualInformationFeatureSelectingEstimator
<Extension()>
Public Function SelectFeaturesBasedOnMutualInformation (catalog As TransformsCatalog.FeatureSelectionTransforms, columns As InputOutputColumnPair(), Optional labelColumnName As String = "Label", Optional slotsInOutput As Integer = 1000, Optional numberOfBins As Integer = 256) As MutualInformationFeatureSelectingEstimator
Parameter
Der Katalog der Transformation.
- columns
- InputOutputColumnPair[]
Gibt die Namen der Eingabespalten für die Transformation und die jeweiligen Ausgabespaltennamen an.
- labelColumnName
- String
Der Name der Bezeichnungsspalte.
- slotsInOutput
- Int32
Die maximale Anzahl von Slots, die in der Ausgabe beibehalten werden sollen. Die Anzahl der zu erhaltenden Slots wird in allen Eingabespalten übernommen.
- numberOfBins
- Int32
Maximale Anzahl von Bins, die verwendet werden, um gegenseitige Informationen zwischen jeder Eingabespalte und der Bezeichnungsspalte zu ungefähren. Leistung von 2 empfohlen.
Gibt zurück
Beispiele
using System;
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic
{
public static class SelectFeaturesBasedOnMutualInformationMultiColumn
{
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var mlContext = new MLContext();
// Get a small dataset as an IEnumerable and convert it to an IDataView.
var rawData = GetData();
// Printing the columns of the input data.
Console.WriteLine($"NumericVectorA NumericVectorB");
foreach (var item in rawData)
Console.WriteLine("{0,-25} {1,-25}", string.Join(",", item
.NumericVectorA), string.Join(",", item.NumericVectorB));
// NumericVectorA NumericVectorB
// 4,0,6 7,8,9
// 0,5,7 7,9,0
// 4,0,6 7,8,9
// 0,5,7 7,8,0
var data = mlContext.Data.LoadFromEnumerable(rawData);
// We define a MutualInformationFeatureSelectingEstimator that selects
// the top k slots in a feature vector based on highest mutual
// information between that slot and a specified label.
// Multi column example : This pipeline transform two columns using the
// provided parameters.
var pipeline = mlContext.Transforms.FeatureSelection
.SelectFeaturesBasedOnMutualInformation(new InputOutputColumnPair[]
{ new InputOutputColumnPair("NumericVectorA"), new
InputOutputColumnPair("NumericVectorB") }, labelColumnName: "Label",
slotsInOutput: 4);
var transformedData = pipeline.Fit(data).Transform(data);
var convertedData = mlContext.Data.CreateEnumerable<TransformedData>(
transformedData, true);
// Printing the columns of the transformed data.
Console.WriteLine($"NumericVectorA NumericVectorB");
foreach (var item in convertedData)
Console.WriteLine("{0,-25} {1,-25}", string.Join(",", item
.NumericVectorA), string.Join(",", item.NumericVectorB));
// NumericVectorA NumericVectorB
// 4,0,6 9
// 0,5,7 0
// 4,0,6 9
// 0,5,7 0
}
private class TransformedData
{
public float[] NumericVectorA { get; set; }
public float[] NumericVectorB { get; set; }
}
public class NumericData
{
public bool Label;
[VectorType(3)]
public float[] NumericVectorA { get; set; }
[VectorType(3)]
public float[] NumericVectorB { get; set; }
}
/// <summary>
/// Returns a few rows of numeric data.
/// </summary>
public static IEnumerable<NumericData> GetData()
{
var data = new List<NumericData>
{
new NumericData
{
Label = true,
NumericVectorA = new float[] { 4, 0, 6 },
NumericVectorB = new float[] { 7, 8, 9 },
},
new NumericData
{
Label = false,
NumericVectorA = new float[] { 0, 5, 7 },
NumericVectorB = new float[] { 7, 9, 0 },
},
new NumericData
{
Label = true,
NumericVectorA = new float[] { 4, 0, 6 },
NumericVectorB = new float[] { 7, 8, 9 },
},
new NumericData
{
Label = false,
NumericVectorA = new float[] { 0, 5, 7 },
NumericVectorB = new float[] { 7, 8, 0 },
}
};
return data;
}
}
}
Gilt für:
SelectFeaturesBasedOnMutualInformation(TransformsCatalog+FeatureSelectionTransforms, String, String, String, Int32, Int32)
Erstellen Sie einen MutualInformationFeatureSelectingEstimator, der die oberen K-Steckplätze über alle angegebenen Spalten auswählt, die durch ihre gegenseitigen Informationen mit der Bezeichnungsspalte angeordnet sind.
public static Microsoft.ML.Transforms.MutualInformationFeatureSelectingEstimator SelectFeaturesBasedOnMutualInformation (this Microsoft.ML.TransformsCatalog.FeatureSelectionTransforms catalog, string outputColumnName, string inputColumnName = default, string labelColumnName = "Label", int slotsInOutput = 1000, int numberOfBins = 256);
static member SelectFeaturesBasedOnMutualInformation : Microsoft.ML.TransformsCatalog.FeatureSelectionTransforms * string * string * string * int * int -> Microsoft.ML.Transforms.MutualInformationFeatureSelectingEstimator
<Extension()>
Public Function SelectFeaturesBasedOnMutualInformation (catalog As TransformsCatalog.FeatureSelectionTransforms, outputColumnName As String, Optional inputColumnName As String = Nothing, Optional labelColumnName As String = "Label", Optional slotsInOutput As Integer = 1000, Optional numberOfBins As Integer = 256) As MutualInformationFeatureSelectingEstimator
Parameter
Der Katalog der Transformation.
- outputColumnName
- String
Name der Spalte, die aus der Transformation von inputColumnName
.
- inputColumnName
- String
Name der Spalte, die transformiert werden soll.
null
Wenn festgelegt auf , wird der Wert des outputColumnName
Werts als Quelle verwendet.
- labelColumnName
- String
Der Name der Bezeichnungsspalte.
- slotsInOutput
- Int32
Die maximale Anzahl von Slots, die in der Ausgabe beibehalten werden sollen. Die Anzahl der zu erhaltenden Slots wird in allen Eingabespalten übernommen.
- numberOfBins
- Int32
Maximale Anzahl von Bins, die verwendet werden, um gegenseitige Informationen zwischen jeder Eingabespalte und der Bezeichnungsspalte zu ungefähren. Leistung von 2 empfohlen.
Gibt zurück
Beispiele
using System;
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic
{
public static class SelectFeaturesBasedOnMutualInformation
{
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var mlContext = new MLContext();
// Get a small dataset as an IEnumerable and convert it to an IDataView.
var rawData = GetData();
// Printing the columns of the input data.
Console.WriteLine($"Label NumericVector");
foreach (var item in rawData)
Console.WriteLine("{0,-25} {1,-25}", item.Label, string.Join(",",
item.NumericVector));
// Label NumericVector
// True 4,0,6
// False 0,5,7
// True 4,0,6
// False 0,5,7
var data = mlContext.Data.LoadFromEnumerable(rawData);
// We define a MutualInformationFeatureSelectingEstimator that selects
// the top k slots in a feature vector based on highest mutual
// information between that slot and a specified label.
var pipeline = mlContext.Transforms.FeatureSelection
.SelectFeaturesBasedOnMutualInformation(outputColumnName:
"NumericVector", labelColumnName: "Label", slotsInOutput: 2);
// The pipeline can then be trained, using .Fit(), and the resulting
// transformer can be used to transform data.
var transformedData = pipeline.Fit(data).Transform(data);
var convertedData = mlContext.Data.CreateEnumerable<TransformedData>(
transformedData, true);
// Printing the columns of the transformed data.
Console.WriteLine($"NumericVector");
foreach (var item in convertedData)
Console.WriteLine("{0,-25}", string.Join(",", item.NumericVector));
// NumericVector
// 4,0
// 0,5
// 4,0
// 0,5
}
public class TransformedData
{
public float[] NumericVector { get; set; }
}
public class NumericData
{
public bool Label;
[VectorType(3)]
public float[] NumericVector { get; set; }
}
/// <summary>
/// Returns a few rows of numeric data.
/// </summary>
public static IEnumerable<NumericData> GetData()
{
var data = new List<NumericData>
{
new NumericData
{
Label = true,
NumericVector = new float[] { 4, 0, 6 },
},
new NumericData
{
Label = false,
NumericVector = new float[] { 0, 5, 7 },
},
new NumericData
{
Label = true,
NumericVector = new float[] { 4, 0, 6 },
},
new NumericData
{
Label = false,
NumericVector = new float[] { 0, 5, 7 },
}
};
return data;
}
}
}