ConversionsExtensionsCatalog.MapKeyToVector Methode
Definition
Wichtig
Einige Informationen beziehen sich auf Vorabversionen, die vor dem Release ggf. grundlegend überarbeitet werden. Microsoft übernimmt hinsichtlich der hier bereitgestellten Informationen keine Gewährleistungen, seien sie ausdrücklich oder konkludent.
Überlädt
MapKeyToVector(TransformsCatalog+ConversionTransforms, InputOutputColumnPair[], Boolean) |
Erstellen Sie einen KeyToVectorMappingEstimatorWert, der den Wert eines Schlüssels in einen Gleitkommavektor ordnet, der den Wert darstellt. |
MapKeyToVector(TransformsCatalog+ConversionTransforms, String, String, Boolean) |
Erstellen Sie einen KeyToVectorMappingEstimatorWert, der den Wert eines Schlüssels in einen Gleitkommavektor ordnet, der den Wert darstellt. |
MapKeyToVector(TransformsCatalog+ConversionTransforms, InputOutputColumnPair[], Boolean)
Erstellen Sie einen KeyToVectorMappingEstimatorWert, der den Wert eines Schlüssels in einen Gleitkommavektor ordnet, der den Wert darstellt.
public static Microsoft.ML.Transforms.KeyToVectorMappingEstimator MapKeyToVector (this Microsoft.ML.TransformsCatalog.ConversionTransforms catalog, Microsoft.ML.InputOutputColumnPair[] columns, bool outputCountVector = false);
static member MapKeyToVector : Microsoft.ML.TransformsCatalog.ConversionTransforms * Microsoft.ML.InputOutputColumnPair[] * bool -> Microsoft.ML.Transforms.KeyToVectorMappingEstimator
<Extension()>
Public Function MapKeyToVector (catalog As TransformsCatalog.ConversionTransforms, columns As InputOutputColumnPair(), Optional outputCountVector As Boolean = false) As KeyToVectorMappingEstimator
Parameter
Katalog der Konvertierungstransformation.
- columns
- InputOutputColumnPair[]
Die Eingabe- und Ausgabespalten. Der Datentyp der neuen Spalte ist ein Vektor, der Single den ursprünglichen Wert darstellt.
- outputCountVector
- Boolean
Ob mehrere Indikatorvektoren in einen einzelnen Vektor von Zählungen kombiniert werden sollen, anstatt sie zu verketten. Dies ist nur relevant, wenn die Eingabespalte ein Vektor von Schlüsseln ist.
Gibt zurück
Beispiele
using System;
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic
{
public class MapKeyToVectorMultiColumn
{
/// This example demonstrates the use of MapKeyToVector by mapping keys to
/// floats[] for multiple columns at once. Because the ML.NET KeyType maps
/// the missing value to zero, counting starts at 1, so the uint values
/// converted to KeyTypes will appear skewed by one.
/// See https://github.com/dotnet/machinelearning/blob/main/docs/code/IDataViewTypeSystem.md#key-types
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var mlContext = new MLContext();
// Get a small dataset as an IEnumerable.
var rawData = new[] {
new DataPoint() { Timeframe = 9, Category = 5 },
new DataPoint() { Timeframe = 8, Category = 4 },
new DataPoint() { Timeframe = 8, Category = 4 },
new DataPoint() { Timeframe = 9, Category = 3 },
new DataPoint() { Timeframe = 2, Category = 3 },
new DataPoint() { Timeframe = 3, Category = 5 }
};
var data = mlContext.Data.LoadFromEnumerable(rawData);
// Constructs the ML.net pipeline
var pipeline = mlContext.Transforms.Conversion.MapKeyToVector(new[]{
new InputOutputColumnPair ("TimeframeVector", "Timeframe"),
new InputOutputColumnPair ("CategoryVector", "Category")
});
// Fits the pipeline to the data.
IDataView transformedData = pipeline.Fit(data).Transform(data);
// Getting the resulting data as an IEnumerable.
// This will contain the newly created columns.
IEnumerable<TransformedData> features = mlContext.Data.CreateEnumerable<
TransformedData>(transformedData, reuseRowObject: false);
Console.WriteLine($" Timeframe TimeframeVector " +
$"Category CategoryVector");
foreach (var featureRow in features)
Console.WriteLine(featureRow.Timeframe + " " +
string.Join(',', featureRow.TimeframeVector) + " " +
featureRow.Category + " " +
string.Join(',', featureRow.CategoryVector));
// TransformedData obtained post-transformation.
//
// Timeframe TimeframeVector Category CategoryVector
// 10 0,0,0,0,0,0,0,0,0,1 6 0,0,0,0,0
// 9 0,0,0,0,0,0,0,0,1,0 5 0,0,0,0,1
// 9 0,0,0,0,0,0,0,0,1,0 5 0,0,0,0,1
// 10 0,0,0,0,0,0,0,0,0,1 4 0,0,0,1,0
// 3 0,0,1,0,0,0,0,0,0,0 4 0,0,0,1,0
// 4 0,0,0,1,0,0,0,0,0,0 6 0,0,0,0,0
}
private class DataPoint
{
// The maximal value used is 9; but since 0 is reserved for missing
// value, we set the count to 10.
[KeyType(10)]
public uint Timeframe { get; set; }
[KeyType(6)]
public uint Category { get; set; }
}
private class TransformedData : DataPoint
{
public float[] TimeframeVector { get; set; }
public float[] CategoryVector { get; set; }
}
}
}
Hinweise
Diese Transformation kann über mehrere Spalten von Schlüsseln ausgeführt werden.
Gilt für:
MapKeyToVector(TransformsCatalog+ConversionTransforms, String, String, Boolean)
Erstellen Sie einen KeyToVectorMappingEstimatorWert, der den Wert eines Schlüssels in einen Gleitkommavektor ordnet, der den Wert darstellt.
public static Microsoft.ML.Transforms.KeyToVectorMappingEstimator MapKeyToVector (this Microsoft.ML.TransformsCatalog.ConversionTransforms catalog, string outputColumnName, string inputColumnName = default, bool outputCountVector = false);
static member MapKeyToVector : Microsoft.ML.TransformsCatalog.ConversionTransforms * string * string * bool -> Microsoft.ML.Transforms.KeyToVectorMappingEstimator
<Extension()>
Public Function MapKeyToVector (catalog As TransformsCatalog.ConversionTransforms, outputColumnName As String, Optional inputColumnName As String = Nothing, Optional outputCountVector As Boolean = false) As KeyToVectorMappingEstimator
Parameter
Katalog der Konvertierungstransformation.
- outputColumnName
- String
Name der Spalte, die aus der Transformation von inputColumnName
.
Der Datentyp ist ein Vektor, der Single den Eingabewert darstellt.
- inputColumnName
- String
Name der zu transformierenden Spalte.
null
Wenn festgelegt auf , wird der Wert des outputColumnName
Werts als Quelle verwendet.
Diese Transformation funktioniert über Schlüssel.
- outputCountVector
- Boolean
Ob mehrere Indikatorvektoren in einen einzelnen Vektor von Zählungen kombiniert werden sollen, anstatt sie zu verketten. Dies ist nur relevant, wenn die Eingabespalte ein Vektor von Schlüsseln ist.
Gibt zurück
Beispiele
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic
{
class MapKeyToVector
{
/// This example demonstrates the use of MapKeyToVector by mapping keys to
/// floats[]. Because the ML.NET KeyType maps the missing value to zero,
/// counting starts at 1, so the uint values converted to KeyTypes will
/// appear skewed by one. See https://github.com/dotnet/machinelearning/blob/main/docs/code/IDataViewTypeSystem.md#key-types
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var mlContext = new MLContext();
// Get a small dataset as an IEnumerable.
var rawData = new[] {
new DataPoint() { Timeframe = 8, PartA=1, PartB=2},
new DataPoint() { Timeframe = 7, PartA=2, PartB=1},
new DataPoint() { Timeframe = 8, PartA=3, PartB=2},
new DataPoint() { Timeframe = 3, PartA=3, PartB=3}
};
var data = mlContext.Data.LoadFromEnumerable(rawData);
// First transform just maps key type to indicator vector. i.e. it's
// produces vector filled with zeros with size of key cardinality and
// set 1 to corresponding key's value index in that array. After that we
// concatenate two columns with single int values into vector of ints.
// Third transform will create vector of keys, where key type is shared
// across whole vector. Forth transform output data as count vector and
// that vector would have size equal to shared key type cardinality and
// put key counts to corresponding indexes in array. Fifth transform
// output indicator vector for each key and concatenate them together.
// Result vector would be size of key cardinality multiplied by size of
// original vector.
var pipeline = mlContext.Transforms.Conversion.MapKeyToVector(
"TimeframeVector", "Timeframe")
.Append(mlContext.Transforms.Concatenate("Parts", "PartA", "PartB"))
.Append(mlContext.Transforms.Conversion.MapValueToKey("Parts"))
.Append(mlContext.Transforms.Conversion.MapKeyToVector(
"PartsCount", "Parts", outputCountVector: true))
.Append(mlContext.Transforms.Conversion.MapKeyToVector(
"PartsNoCount", "Parts"));
// Fits the pipeline to the data.
IDataView transformedData = pipeline.Fit(data).Transform(data);
// Getting the resulting data as an IEnumerable.
// This will contain the newly created columns.
IEnumerable<TransformedData> features = mlContext.Data.CreateEnumerable<
TransformedData>(transformedData, reuseRowObject: false);
Console.WriteLine("Timeframe TimeframeVector PartsCount " +
"PartsNoCount");
foreach (var featureRow in features)
Console.WriteLine(featureRow.Timeframe + " " +
string.Join(',', featureRow.TimeframeVector.Select(x => x)) + " "
+ string.Join(',', featureRow.PartsCount.Select(x => x)) +
" " + string.Join(',', featureRow.PartsNoCount.Select(
x => x)));
// Expected output:
// Timeframe TimeframeVector PartsCount PartsNoCount
// 9 0,0,0,0,0,0,0,0,1 1,1,0 1,0,0,0,1,0
// 8 0,0,0,0,0,0,0,1,0 1,1,0 0,1,0,1,0,0
// 9 0,0,0,0,0,0,0,0,1 0,1,1 0,0,1,0,1,0
// 4 0,0,0,1,0,0,0,0,0 0,0,2 0,0,1,0,0,1
}
private class DataPoint
{
[KeyType(9)]
public uint Timeframe { get; set; }
public int PartA { get; set; }
public int PartB { get; set; }
}
private class TransformedData : DataPoint
{
public float[] TimeframeVector { get; set; }
public float[] PartsCount { get; set; }
public float[] PartsNoCount { get; set; }
}
}
}