ConversionsExtensionsCatalog.MapKeyToValue Methode
Definition
Wichtig
Einige Informationen beziehen sich auf Vorabversionen, die vor dem Release ggf. grundlegend überarbeitet werden. Microsoft übernimmt hinsichtlich der hier bereitgestellten Informationen keine Gewährleistungen, seien sie ausdrücklich oder konkludent.
Überlädt
MapKeyToValue(TransformsCatalog+ConversionTransforms, InputOutputColumnPair[]) |
Erstellen Sie eine KeyToValueMappingEstimator, die die Schlüsseltypen wieder in ihre ursprünglichen Werte konvertiert. |
MapKeyToValue(TransformsCatalog+ConversionTransforms, String, String) |
Erstellen Sie eine KeyToValueMappingEstimator, die die Schlüsseltypen wieder in ihre ursprünglichen Werte konvertiert. |
MapKeyToValue(TransformsCatalog+ConversionTransforms, InputOutputColumnPair[])
Erstellen Sie eine KeyToValueMappingEstimator, die die Schlüsseltypen wieder in ihre ursprünglichen Werte konvertiert.
public static Microsoft.ML.Transforms.KeyToValueMappingEstimator MapKeyToValue (this Microsoft.ML.TransformsCatalog.ConversionTransforms catalog, Microsoft.ML.InputOutputColumnPair[] columns);
static member MapKeyToValue : Microsoft.ML.TransformsCatalog.ConversionTransforms * Microsoft.ML.InputOutputColumnPair[] -> Microsoft.ML.Transforms.KeyToValueMappingEstimator
<Extension()>
Public Function MapKeyToValue (catalog As TransformsCatalog.ConversionTransforms, columns As InputOutputColumnPair()) As KeyToValueMappingEstimator
Parameter
Der Katalog der Konvertierungstransformation.
- columns
- InputOutputColumnPair[]
Die Eingabe- und Ausgabespalten. Diese Transformation funktioniert über Schlüssel. Der Datentyp der neuen Spalte ist der Typ des ursprünglichen Werts.
Gibt zurück
Beispiele
using System;
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic
{
/// This example demonstrates the use of the ValueToKeyMappingEstimator, by
/// mapping KeyType values to the original strings. For more on ML.NET KeyTypes
/// see: https://github.com/dotnet/machinelearning/blob/main/docs/code/IDataViewTypeSystem.md#key-types
public class MapKeyToValueMultiColumn
{
public static void Example()
{
// Create a new context for ML.NET operations. It can be used for
// exception tracking and logging, as a catalog of available operations
// and as the source of randomness. Setting the seed to a fixed number
// in this example to make outputs deterministic.
var mlContext = new MLContext(seed: 0);
// Get a small dataset as an IEnumerable.
// Create a list of data examples.
var examples = GenerateRandomDataPoints(1000, 10);
// Convert the examples list to an IDataView object, which is consumable
// by ML.NET API.
var dataView = mlContext.Data.LoadFromEnumerable(examples);
// Create a pipeline.
var pipeline =
// Convert the string labels into key types.
mlContext.Transforms.Conversion.MapValueToKey("Label")
// Apply StochasticDualCoordinateAscent multiclass trainer.
.Append(mlContext.MulticlassClassification.Trainers.
SdcaMaximumEntropy());
// Train the model and do predictions on same data set.
// Typically predictions would be in a different, validation set.
var dataWithPredictions = pipeline.Fit(dataView).Transform(dataView);
// At this point, the Label column is transformed from strings, to
// DataViewKeyType and the transformation has added the PredictedLabel
// column, with same DataViewKeyType as transformed Label column.
// MapKeyToValue would take columns with DataViewKeyType and convert
// them back to their original values.
var newPipeline = mlContext.Transforms.Conversion.MapKeyToValue(new[]
{
new InputOutputColumnPair("LabelOriginalValue","Label"),
new InputOutputColumnPair("PredictedLabelOriginalValue",
"PredictedLabel")
});
var transformedData = newPipeline.Fit(dataWithPredictions).Transform(
dataWithPredictions);
// Let's iterate over first 5 items.
transformedData = mlContext.Data.TakeRows(transformedData, 5);
var values = mlContext.Data.CreateEnumerable<TransformedData>(
transformedData, reuseRowObject: false);
// Printing the column names of the transformed data.
Console.WriteLine($"Label LabelOriginalValue PredictedLabel " +
$"PredictedLabelOriginalValue");
foreach (var row in values)
Console.WriteLine($"{row.Label}\t\t{row.LabelOriginalValue}\t\t\t" +
$"{row.PredictedLabel}\t\t\t{row.PredictedLabelOriginalValue}");
// Expected output:
// Label LabelOriginalValue PredictedLabel PredictedLabelOriginalValue
// 1 AA 1 AA
// 2 BB 2 BB
// 3 CC 4 DD
// 4 DD 4 DD
// 1 AA 1 AA
}
private class DataPoint
{
public string Label { get; set; }
[VectorType(10)]
public float[] Features { get; set; }
}
private static List<DataPoint> GenerateRandomDataPoints(int count,
int featureVectorLenght)
{
var examples = new List<DataPoint>();
var rnd = new Random(0);
for (int i = 0; i < count; ++i)
{
var example = new DataPoint();
example.Features = new float[featureVectorLenght];
var res = i % 4;
// Generate random float feature values.
for (int j = 0; j < featureVectorLenght; ++j)
{
var value = (float)rnd.NextDouble() + res * 0.2f;
example.Features[j] = value;
}
// Generate label based on feature sum.
if (res == 0)
example.Label = "AA";
else if (res == 1)
example.Label = "BB";
else if (res == 2)
example.Label = "CC";
else
example.Label = "DD";
examples.Add(example);
}
return examples;
}
private class TransformedData
{
public uint Label { get; set; }
public uint PredictedLabel { get; set; }
public string LabelOriginalValue { get; set; }
public string PredictedLabelOriginalValue { get; set; }
}
}
}
Hinweise
Diese Transformation kann über mehrere Spalten ausgeführt werden. Diese Transformation befindet sich häufig in der Pipeline nach einer der Überladungen MapValueToKey(TransformsCatalog+ConversionTransforms, InputOutputColumnPair[], Int32, ValueToKeyMappingEstimator+KeyOrdinality, Boolean, IDataView)
Gilt für:
MapKeyToValue(TransformsCatalog+ConversionTransforms, String, String)
Erstellen Sie eine KeyToValueMappingEstimator, die die Schlüsseltypen wieder in ihre ursprünglichen Werte konvertiert.
public static Microsoft.ML.Transforms.KeyToValueMappingEstimator MapKeyToValue (this Microsoft.ML.TransformsCatalog.ConversionTransforms catalog, string outputColumnName, string inputColumnName = default);
static member MapKeyToValue : Microsoft.ML.TransformsCatalog.ConversionTransforms * string * string -> Microsoft.ML.Transforms.KeyToValueMappingEstimator
<Extension()>
Public Function MapKeyToValue (catalog As TransformsCatalog.ConversionTransforms, outputColumnName As String, Optional inputColumnName As String = Nothing) As KeyToValueMappingEstimator
Parameter
Der Katalog der Konvertierungstransformation.
- outputColumnName
- String
Name der Spalte, die aus der Transformation von inputColumnName
.
Der Typ ist der Typ des ursprünglichen Werts.
- inputColumnName
- String
Name der zu transformierenden Spalte. Wenn dieser Wert als null
Quelle festgelegt ist, wird der Wert des Werts outputColumnName
als Quelle verwendet.
Diese Transformation funktioniert über Schlüssel.
Gibt zurück
Beispiele
using System;
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.SamplesUtils;
using Microsoft.ML.Transforms;
namespace Samples.Dynamic
{
public class KeyToValueToKey
{
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var mlContext = new MLContext();
// Get a small dataset as an IEnumerable.
var rawData = new[] {
new DataPoint() { Review = "animals birds cats dogs fish horse"},
new DataPoint() { Review = "horse birds house fish duck cats"},
new DataPoint() { Review = "car truck driver bus pickup"},
new DataPoint() { Review = "car truck driver bus pickup horse"},
};
var trainData = mlContext.Data.LoadFromEnumerable(rawData);
// A pipeline to convert the terms of the 'Review' column in
// making use of default settings.
var defaultPipeline = mlContext.Transforms.Text.TokenizeIntoWords(
"TokenizedText", nameof(DataPoint.Review)).Append(mlContext
.Transforms.Conversion.MapValueToKey(nameof(TransformedData.Keys),
"TokenizedText"));
// Another pipeline, that customizes the advanced settings of the
// ValueToKeyMappingEstimator. We can change the maximumNumberOfKeys to
// limit how many keys will get generated out of the set of words, and
// condition the order in which they get evaluated by changing
// keyOrdinality from the default ByOccurence (order in which they get
// encountered) to value/alphabetically.
var customizedPipeline = mlContext.Transforms.Text.TokenizeIntoWords(
"TokenizedText", nameof(DataPoint.Review)).Append(mlContext
.Transforms.Conversion.MapValueToKey(nameof(TransformedData.Keys),
"TokenizedText", maximumNumberOfKeys: 10, keyOrdinality:
ValueToKeyMappingEstimator.KeyOrdinality.ByValue));
// The transformed data.
var transformedDataDefault = defaultPipeline.Fit(trainData).Transform(
trainData);
var transformedDataCustomized = customizedPipeline.Fit(trainData)
.Transform(trainData);
// Getting the resulting data as an IEnumerable.
// This will contain the newly created columns.
IEnumerable<TransformedData> defaultData = mlContext.Data.
CreateEnumerable<TransformedData>(transformedDataDefault,
reuseRowObject: false);
IEnumerable<TransformedData> customizedData = mlContext.Data.
CreateEnumerable<TransformedData>(transformedDataCustomized,
reuseRowObject: false);
Console.WriteLine($"Keys");
foreach (var dataRow in defaultData)
Console.WriteLine($"{string.Join(',', dataRow.Keys)}");
// Expected output:
// Keys
// 1,2,3,4,5,6
// 6,2,7,5,8,3
// 9,10,11,12,13
// 9,10,11,12,13,6
Console.WriteLine($"Keys");
foreach (var dataRow in customizedData)
Console.WriteLine($"{string.Join(',', dataRow.Keys)}");
// Expected output:
// Keys
// 1,2,4,5,7,8
// 8,2,9,7,6,4
// 3,10,0,0,0
// 3,10,0,0,0,8
// Retrieve the original values, by appending the KeyToValue estimator to
// the existing pipelines to convert the keys back to the strings.
var pipeline = defaultPipeline.Append(mlContext.Transforms.Conversion
.MapKeyToValue(nameof(TransformedData.Keys)));
transformedDataDefault = pipeline.Fit(trainData).Transform(trainData);
// Preview of the DefaultColumnName column obtained.
var originalColumnBack = transformedDataDefault.GetColumn<VBuffer<
ReadOnlyMemory<char>>>(transformedDataDefault.Schema[nameof(
TransformedData.Keys)]);
foreach (var row in originalColumnBack)
{
foreach (var value in row.GetValues())
Console.Write($"{value} ");
Console.WriteLine("");
}
// Expected output:
// animals birds cats dogs fish horse
// horse birds house fish duck cats
// car truck driver bus pickup
// car truck driver bus pickup horse
}
private class DataPoint
{
public string Review { get; set; }
}
private class TransformedData : DataPoint
{
public uint[] Keys { get; set; }
}
}
}
Hinweise
Diese Transformation befindet sich häufig in der Pipeline nach einer der Überladungen MapValueToKey(TransformsCatalog+ConversionTransforms, InputOutputColumnPair[], Int32, ValueToKeyMappingEstimator+KeyOrdinality, Boolean, IDataView)