AutoCatalog.CreateSweepableEstimator<T> Methode
Definition
Wichtig
Einige Informationen beziehen sich auf Vorabversionen, die vor dem Release ggf. grundlegend überarbeitet werden. Microsoft übernimmt hinsichtlich der hier bereitgestellten Informationen keine Gewährleistungen, seien sie ausdrücklich oder konkludent.
Erstellen Sie eine überschäumbare Schätzfunktion mit einer benutzerdefinierten Fabrik und einem Suchraum.
public Microsoft.ML.AutoML.SweepableEstimator CreateSweepableEstimator<T> (Func<Microsoft.ML.MLContext,T,Microsoft.ML.IEstimator<Microsoft.ML.ITransformer>> factory, Microsoft.ML.SearchSpace.SearchSpace<T> ss = default) where T : class, new();
member this.CreateSweepableEstimator : Func<Microsoft.ML.MLContext, 'T, Microsoft.ML.IEstimator<Microsoft.ML.ITransformer> (requires 'T : null and 'T : (new : unit -> 'T))> * Microsoft.ML.SearchSpace.SearchSpace<'T (requires 'T : null and 'T : (new : unit -> 'T))> -> Microsoft.ML.AutoML.SweepableEstimator (requires 'T : null and 'T : (new : unit -> 'T))
Public Function CreateSweepableEstimator(Of T As {Class, New}) (factory As Func(Of MLContext, T, IEstimator(Of ITransformer)), Optional ss As SearchSpace(Of T) = Nothing) As SweepableEstimator
Typparameter
- T
Parameter
- factory
- Func<MLContext,T,IEstimator<ITransformer>>
Gibt zurück
Beispiele
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using Microsoft.ML.Data;
using Microsoft.ML.SearchSpace;
namespace Microsoft.ML.AutoML.Samples
{
public static class SweepableLightGBMBinaryExperiment
{
class LightGBMOption
{
[Range(4, 32768, init: 4, logBase: false)]
public int NumberOfLeaves { get; set; } = 4;
[Range(4, 32768, init: 4, logBase: false)]
public int NumberOfTrees { get; set; } = 4;
}
public static async Task RunAsync()
{
// This example shows how to use Sweepable API to run hyper-parameter optimization over
// LightGBM trainer with a customized search space.
// Create a new context for ML.NET operations. It can be used for
// exception tracking and logging, as a catalog of available operations
// and as the source of randomness. Setting the seed to a fixed number
// in this example to make outputs deterministic.
var seed = 0;
var context = new MLContext(seed);
// Create a list of training data points and convert it to IDataView.
var data = GenerateRandomBinaryClassificationDataPoints(100, seed);
var dataView = context.Data.LoadFromEnumerable(data);
// Split the dataset into train and test sets with 10% of the data used for testing.
var trainTestSplit = context.Data.TrainTestSplit(dataView, testFraction: 0.1);
// Define a customized search space for LightGBM
var lgbmSearchSpace = new SearchSpace<LightGBMOption>();
// Define the sweepable LightGBM estimator.
var lgbm = context.Auto().CreateSweepableEstimator((_context, option) =>
{
return _context.BinaryClassification.Trainers.LightGbm(
"Label",
"Features",
numberOfLeaves: option.NumberOfLeaves,
numberOfIterations: option.NumberOfTrees);
}, lgbmSearchSpace);
// Create sweepable pipeline
var pipeline = new EstimatorChain<ITransformer>().Append(lgbm);
// Create an AutoML experiment
var experiment = context.Auto().CreateExperiment();
// Redirect AutoML log to console
context.Log += (object o, LoggingEventArgs e) =>
{
if (e.Source == nameof(AutoMLExperiment) && e.Kind > Runtime.ChannelMessageKind.Trace)
{
Console.WriteLine(e.RawMessage);
}
};
// Config experiment to optimize "Accuracy" metric on given dataset.
// This experiment will run hyper-parameter optimization on given pipeline
experiment.SetPipeline(pipeline)
.SetDataset(trainTestSplit.TrainSet, fold: 5) // use 5-fold cross validation to evaluate each trial
.SetBinaryClassificationMetric(BinaryClassificationMetric.Accuracy, "Label")
.SetMaxModelToExplore(100); // explore 100 trials
// start automl experiment
var result = await experiment.RunAsync();
// Expected output samples during training. The pipeline will be unknown because it's created using
// customized sweepable estimator, therefore AutoML doesn't have the knowledge of the exact type of the estimator.
// Update Running Trial - Id: 0
// Update Completed Trial - Id: 0 - Metric: 0.5105967259285338 - Pipeline: Unknown=>Unknown - Duration: 616 - Peak CPU: 0.00% - Peak Memory in MB: 35.54
// Update Best Trial - Id: 0 - Metric: 0.5105967259285338 - Pipeline: Unknown=>Unknown
// evaluate test dataset on best model.
var bestModel = result.Model;
var eval = bestModel.Transform(trainTestSplit.TestSet);
var metrics = context.BinaryClassification.Evaluate(eval);
PrintMetrics(metrics);
// Expected output:
// Accuracy: 0.67
// AUC: 0.75
// F1 Score: 0.33
// Negative Precision: 0.88
// Negative Recall: 0.70
// Positive Precision: 0.25
// Positive Recall: 0.50
// TEST POSITIVE RATIO: 0.1667(2.0 / (2.0 + 10.0))
// Confusion table
// ||======================
// PREDICTED || positive | negative | Recall
// TRUTH ||======================
// positive || 1 | 1 | 0.5000
// negative || 3 | 7 | 0.7000
// ||======================
// Precision || 0.2500 | 0.8750 |
}
private static IEnumerable<BinaryClassificationDataPoint> GenerateRandomBinaryClassificationDataPoints(int count,
int seed = 0)
{
var random = new Random(seed);
float randomFloat() => (float)random.NextDouble();
for (int i = 0; i < count; i++)
{
var label = randomFloat() > 0.5f;
yield return new BinaryClassificationDataPoint
{
Label = label,
// Create random features that are correlated with the label.
// For data points with false label, the feature values are
// slightly increased by adding a constant.
Features = Enumerable.Repeat(label, 50)
.Select(x => x ? randomFloat() : randomFloat() +
0.1f).ToArray()
};
}
}
// Example with label and 50 feature values. A data set is a collection of
// such examples.
private class BinaryClassificationDataPoint
{
public bool Label { get; set; }
[VectorType(50)]
public float[] Features { get; set; }
}
// Class used to capture predictions.
private class Prediction
{
// Original label.
public bool Label { get; set; }
// Predicted label from the trainer.
public bool PredictedLabel { get; set; }
}
// Pretty-print BinaryClassificationMetrics objects.
private static void PrintMetrics(BinaryClassificationMetrics metrics)
{
Console.WriteLine($"Accuracy: {metrics.Accuracy:F2}");
Console.WriteLine($"AUC: {metrics.AreaUnderRocCurve:F2}");
Console.WriteLine($"F1 Score: {metrics.F1Score:F2}");
Console.WriteLine($"Negative Precision: " +
$"{metrics.NegativePrecision:F2}");
Console.WriteLine($"Negative Recall: {metrics.NegativeRecall:F2}");
Console.WriteLine($"Positive Precision: " +
$"{metrics.PositivePrecision:F2}");
Console.WriteLine($"Positive Recall: {metrics.PositiveRecall:F2}\n");
Console.WriteLine(metrics.ConfusionMatrix.GetFormattedConfusionTable());
}
}
}