SKU-Liste für verwaltete Onlineendpunkte
Die folgende Tabelle zeigt die Vm-Lagerhaltungseinheiten (VM), die für von Azure Machine Learning verwaltete Onlineendpunkte unterstützt werden. Jede SKU ist ein eindeutiger alphanumerischer Code, der einem bestimmten virtuellen Computer zugewiesen ist, der erworben werden kann.
Die in der Tabelle aufgeführten vollständigen SKU-Namen können für Anforderungen von Azure CLI- oder Azure Resource Manager-Vorlagen (ARM-Vorlagen) verwendet werden, um Bereitstellungen zu erstellen und zu aktualisieren.
Weitere Informationen zu Konfigurationsdetails wie CPU und RAM finden Sie unter Azure Machine Learning-Preise und VM-Größen.
Familienname | NAME DER VM-Größe | Unterstützt Infiniband | Aufbau | numberOfGPUs | numberOfCores | Reservierung überspringen 20% |
---|---|---|---|---|---|---|
standardDASv4Family | STANDARD_D2AS_V4 | - | CPU | 0 | 2 | - |
standardDASv4Family | STANDARD_D4AS_V4 | - | CPU | 0 | 4 | - |
standardDASv4Family | STANDARD_D8AS_V4 | - | CPU | 0 | 8 | - |
standardDASv4Family | STANDARD_D16AS_V4 | - | CPU | 0 | 16 | - |
standardDASv4Family | STANDARD_D32AS_V4 | - | CPU | 0 | 32 | - |
standardDASv4Family | STANDARD_D48AS_V4 | - | CPU | 0 | 48 | - |
standardDASv4Family | STANDARD_D64AS_V4 | - | CPU | 0 | 64 | - |
standardDASv4Family | STANDARD_D96AS_V4 | - | CPU | 0 | 96 | - |
standardDAv4Family | STANDARD_D2A_V4 | - | CPU | 0 | 2 | - |
standardDAv4Family | STANDARD_D4A_V4 | - | CPU | 0 | 4 | - |
standardDAv4Family | STANDARD_D8A_V4 | - | CPU | 0 | 8 | - |
standardDAv4Family | STANDARD_D16A_V4 | - | CPU | 0 | 16 | - |
standardDAv4Family | STANDARD_D32A_V4 | - | CPU | 0 | 32 | - |
standardDAv4Family | STANDARD_D48A_V4 | - | CPU | 0 | 48 | - |
standardDAv4Family | STANDARD_D64A_V4 | - | CPU | 0 | 64 | - |
standardDAv4Family | STANDARD_D96A_V4 | - | CPU | 0 | 96 | - |
standardDSv2Family | STANDARD_DS1_V2 | - | CPU | 0 | 1 | - |
standardDSv2Family | STANDARD_DS2_V2 | - | CPU | 0 | 2 | - |
standardDSv2Family | STANDARD_DS3_V2 | - | CPU | 0 | 4 | - |
standardDSv2Family | STANDARD_DS4_V2 | - | CPU | 0 | 8 | - |
standardDSv2Family | STANDARD_DS5_V2 | - | CPU | 0 | 16 | - |
standardESv3Family | STANDARD_E2S_V3 | - | CPU | 0 | 2 | - |
standardESv3Family | STANDARD_E4S_V3 | - | CPU | 0 | 4 | - |
standardESv3Family | STANDARD_E8S_V3 | - | CPU | 0 | 8 | - |
standardESv3Family | STANDARD_E16S_V3 | - | CPU | 0 | 16 | - |
standardESv3Family | STANDARD_E32S_V3 | - | CPU | 0 | 32 | - |
standardESv3Family | STANDARD_E48S_V3 | - | CPU | 0 | 48 | - |
standardESv3Family | STANDARD_E64S_V3 | - | CPU | 0 | 64 | - |
standardFSv2Family | STANDARD_F2S_V2 | - | CPU | 0 | 2 | - |
standardFSv2Family | STANDARD_F4S_V2 | - | CPU | 0 | 4 | - |
standardFSv2Family | STANDARD_F8S_V2 | - | CPU | 0 | 8 | - |
standardFSv2Family | STANDARD_F16S_V2 | - | CPU | 0 | 16 | - |
standardFSv2Family | STANDARD_F32S_V2 | - | CPU | 0 | 32 | - |
standardFSv2Family | STANDARD_F48S_V2 | - | CPU | 0 | 48 | - |
standardFSv2Family | STANDARD_F64S_V2 | - | CPU | 0 | 64 | - |
standardFSv2Family | STANDARD_F72S_V2 | - | CPU | 0 | 72 | - |
standardFXMDVSFamily | STANDARD_FX4MDS | - | CPU | 0 | 4 | - |
standardFXMDVSFamily | STANDARD_FX12MDS | - | CPU | 0 | 12 | - |
standardFXMDVSFamily | STANDARD_FX24MDS | - | CPU | 0 | 24 | - |
standardFXMDVSFamily | STANDARD_FX36MDS | - | CPU | 0 | 36 | - |
standardFXMDVSFamily | STANDARD_FX48MDS | - | CPU | 0 | 48 | - |
standardLASv3Family | STANDARD_L8AS_V3 | - | CPU | 0 | 8 | - |
standardLASv3Family | STANDARD_L16AS_V3 | - | CPU | 0 | 16 | - |
standardLASv3Family | STANDARD_L32AS_V3 | - | CPU | 0 | 32 | - |
standardLASv3Family | STANDARD_L48AS_V3 | - | CPU | 0 | 48 | - |
standardLASv3Family | STANDARD_L64AS_V3 | - | CPU | 0 | 64 | - |
standardLASv3Family | STANDARD_L80AS_V3 | - | CPU | 0 | 80 | - |
standardLSv2Family | STANDARD_L8S_V2 | - | CPU | 0 | 8 | - |
standardLSv2Family | STANDARD_L16S_V2 | - | CPU | 0 | 16 | - |
standardLSv2Family | STANDARD_L32S_V2 | - | CPU | 0 | 32 | - |
standardLSv2Family | STANDARD_L48S_V2 | - | CPU | 0 | 48 | - |
standardLSv2Family | STANDARD_L64S_V2 | - | CPU | 0 | 64 | - |
standardLSv2Family | STANDARD_L80S_V2 | - | CPU | 0 | 80 | - |
standardLSv3Family | STANDARD_L8S_V3 | - | CPU | 0 | 8 | - |
standardLSv3Family | STANDARD_L16S_V3 | - | CPU | 0 | 16 | - |
standardLSv3Family | STANDARD_L32S_V3 | - | CPU | 0 | 32 | - |
standardLSv3Family | STANDARD_L48S_V3 | - | CPU | 0 | 48 | - |
standardLSv3Family | STANDARD_L64S_V3 | - | CPU | 0 | 64 | - |
standardLSv3Family | STANDARD_L80S_V3 | - | CPU | 0 | 80 | - |
standardNCADSA100v4Family | STANDARD_NC24ADS_A100_V4 | - | NvidiaGpu | 1 | 24 | Ja |
standardNCADSA100v4Family | STANDARD_NC48ADS_A100_V4 | - | NvidiaGpu | 2 | 48 | Ja |
standardNCADSA100v4Family | STANDARD_NC96ADS_A100_V4 | - | NvidiaGpu | 4 | 96 | Ja |
Standard-NCASv3_T4 Familie | STANDARD_NC4AS_T4_V3 | - | NvidiaGpu | 1 | 4 | - |
Standard-NCASv3_T4 Familie | STANDARD_NC8AS_T4_V3 | - | NvidiaGpu | 1 | 8 | - |
Standard-NCASv3_T4 Familie | STANDARD_NC16AS_T4_V3 | - | NvidiaGpu | 1 | 16 | - |
Standard-NCASv3_T4 Familie | STANDARD_NC64AS_T4_V3 | - | NvidiaGpu | 4 | 64 | - |
standardNCSv2Family | STANDARD_NC6S_V2 | - | NvidiaGpu | 1 | 6 | - |
standardNCSv2Family | STANDARD_NC12S_V2 | - | NvidiaGpu | 2 | 12 | - |
standardNCSv2Family | STANDARD_NC24S_V2 | - | NvidiaGpu | 4 | 24 | - |
standardNCSv3Family | STANDARD_NC6S_V3 | - | NvidiaGpu | 1 | 6 | - |
standardNCSv3Family | STANDARD_NC12S_V3 | - | NvidiaGpu | 2 | 12 | - |
standardNCSv3Family | STANDARD_NC24S_V3 | - | NvidiaGpu | 4 | 24 | - |
standardNCADSH100v5Family | STANDARD_NC40ADS_H100_V5 | - | NvidiaGpu | 1 | 40 | Ja |
standardNCADSH100v5Family | STANDARD_NC80ADIS_H100_V5 | - | NvidiaGpu | 2 | 80 | Ja |
Standard-NDAMSv4_A100Family | STANDARD_ND96AMSR_A100_V4 | Ja | NvidiaGpu | 8 | 96 | Ja |
Standard-NDASv4_A100 Familie | STANDARD_ND96ASR_V4 | Ja | NvidiaGpu | 8 | 96 | Ja |
standardNDSv2Family | STANDARD_ND40RS_V2 | Ja | NvidiaGpu | 8 | 40 | Ja |
standardNDv5H100Family | STANDARD_ND96IS_H100_v5 | - | NvidiaGpu | 8 | 96 | Ja |
standardNDv5H100Family | STANDARD_ND96ISR_H100_v5 | Ja | NvidiaGpu | 8 | 96 | Ja |
Achtung
Kleine VM-SKUs wie Standard_DS1_v2
z. B. zu Standard_F2s_v2
klein für größere Modelle und können aufgrund unzureichendem Arbeitsspeicher, nicht genügend Speicherplatz auf dem Datenträger oder Fehler des Prüfpunkts führen, da es zu lange dauert, um den Container zu initiieren. Wenn OutOfQuota-Fehler oder ReourceNotReady-Fehler auftreten, versuchen Sie größere VM-SKUs. Wenn Sie die Kosten für die Bereitstellung mehrerer Modelle mit verwaltetem Onlineendpunkt reduzieren möchten, lesen Sie die Bereitstellung mehrerer lokaler Modelle.
Hinweis
Wir empfehlen, mehr als drei Instanzen für Bereitstellungen in Produktionsszenarien zu verwenden. Darüber hinaus reserviert Azure Machine Learning 20 % Ihrer Computeressourcen für die Durchführung von Upgrades auf einigen VM-SKUs, wie in VM-Kontingentzuweisung für die Bereitstellung beschrieben. VM-SKUs, die von dieser zusätzlichen Kontingentreservierung ausgenommen sind, werden in der Spalte "Reservierung überspringen 20%" angegeben.