Freigeben über


PIVOT-Klausel

Gilt für: durch Häkchen mit „Ja“ markiert Databricks SQL durch Häkchen mit „Ja“ markiert Databricks Runtime

Transformiert die Zeilen der table_reference durch Rotieren eindeutiger Werte einer angegebenen Spaltenliste in separate Spalten.

Syntax

table_reference PIVOT ( { aggregate_expression [ [ AS ] agg_column_alias ] } [, ...]
    FOR column_list IN ( expression_list ) )

column_list
 { column_name |
   ( column_name [, ...] ) }

expression_list
 { expression [ AS ] [ column_alias ] |
   { ( expression [, ...] ) [ AS ] [ column_alias] } [, ...] ) }

Parameter

  • table_reference

    Identifiziert das Objekt des PIVOT-Vorgangs.

  • aggregate_expression

    Ein Ausdruck eines beliebigen Typs, bei dem alle Spaltenverweise von table_reference Argumente für Aggregatfunktionen sind.

  • agg_column_alias

    Ein optionaler Alias für das Ergebnis der Aggregation. Wenn kein Alias angegeben ist, generiert PIVOT einen Alias auf Basis von aggregate_expression.

  • column_list

    Die Menge von Spalten, die rotiert werden sollen.

  • expression_list

    Ordnet Werte aus column_list den Spaltenaliasen zu.

    • expression

      Ein Literalausdruck mit einem Typ, der den kleinsten gemeinsamen Typ mit dem entsprechenden column_name hat.

      Die Anzahl der Ausdrücke in jedem Tupel muss mit der Anzahl von column_names in column_list übereinstimmen.

    • column_alias

      Ein optionaler Alias, der den Namen der generierten Spalte angibt. Wenn kein Alias angegeben ist, generiert PIVOT einen Alias auf Basis der Instanzen von expression.

Ergebnis

Eine temporäre Tabelle im folgenden Format:

  • Alle Spalten aus dem Zwischenresultset von table_reference, die nicht in einem aggregate_expression oder einer column_list festgelegt wurden.

    Diese Spalten sind Gruppierungsspalten.

  • Für jedes expression-Tupel und jede aggregate_expression-Kombination generiert PIVOT eine Spalte. Der Typ ist der Typ von aggregate_expression.

    Wenn es nur einen aggregate_expression gibt, wird die Spalte mithilfe von column_alias benannt. Andernfalls lautet der Name column_alias_agg_column_alias.

    Der Wert in jeder Zelle ist das Ergebnis von aggregation_expression unter Verwendung von FILTER ( WHERE column_list IN (expression, ...).

Beispiele

-- A very basic PIVOT
-- Given a table with sales by quarter, return a table that returns sales across quarters per year.
> CREATE TEMP VIEW sales(year, quarter, region, sales) AS
   VALUES (2018, 1, 'east', 100),
          (2018, 2, 'east',  20),
          (2018, 3, 'east',  40),
          (2018, 4, 'east',  40),
          (2019, 1, 'east', 120),
          (2019, 2, 'east', 110),
          (2019, 3, 'east',  80),
          (2019, 4, 'east',  60),
          (2018, 1, 'west', 105),
          (2018, 2, 'west',  25),
          (2018, 3, 'west',  45),
          (2018, 4, 'west',  45),
          (2019, 1, 'west', 125),
          (2019, 2, 'west', 115),
          (2019, 3, 'west',  85),
          (2019, 4, 'west',  65);

> SELECT year, region, q1, q2, q3, q4
  FROM sales
  PIVOT (sum(sales) AS sales
    FOR quarter
    IN (1 AS q1, 2 AS q2, 3 AS q3, 4 AS q4));
 2018  east  100   20  40  40
 2019  east  120  110  80  60
 2018  west  105   25  45  45
 2019  west  125  115  85  65

-- The same query written without PIVOT
> SELECT year, region,
         sum(sales) FILTER(WHERE quarter = 1) AS q1,
         sum(sales) FILTER(WHERE quarter = 2) AS q2,
         sum(sales) FILTER(WHERE quarter = 3) AS q2,
         sum(sales) FILTER(WHERE quarter = 4) AS q4
  FROM sales
  GROUP BY year, region;
 2018  east  100   20  40  40
 2019  east  120  110  80  60
 2018  west  105   25  45  45
 2019  west  125  115  85  65

-- Also PIVOT on region
> SELECT year, q1_east, q1_west, q2_east, q2_west, q3_east, q3_west, q4_east, q4_west
    FROM sales
    PIVOT (sum(sales) AS sales
      FOR (quarter, region)
      IN ((1, 'east') AS q1_east, (1, 'west') AS q1_west, (2, 'east') AS q2_east, (2, 'west') AS q2_west,
          (3, 'east') AS q3_east, (3, 'west') AS q3_west, (4, 'east') AS q4_east, (4, 'west') AS q4_west));
 2018  100  105   20   25  40  45  40  45
 2019  120  125  110  115  80  85  60  65

-- The same query written without PIVOT
> SELECT year,
    sum(sales) FILTER(WHERE (quarter, region) IN ((1, 'east'))) AS q1_east,
    sum(sales) FILTER(WHERE (quarter, region) IN ((1, 'west'))) AS q1_west,
    sum(sales) FILTER(WHERE (quarter, region) IN ((2, 'east'))) AS q2_east,
    sum(sales) FILTER(WHERE (quarter, region) IN ((2, 'west'))) AS q2_west,
    sum(sales) FILTER(WHERE (quarter, region) IN ((3, 'east'))) AS q3_east,
    sum(sales) FILTER(WHERE (quarter, region) IN ((3, 'west'))) AS q3_west,
    sum(sales) FILTER(WHERE (quarter, region) IN ((4, 'east'))) AS q4_east,
    sum(sales) FILTER(WHERE (quarter, region) IN ((4, 'west'))) AS q4_west
    FROM sales
    GROUP BY year;
 2018  100  105   20   25  40  45  40  45
 2019  120  125  110  115  80  85  60  65

-- To aggregate across regions the column must be removed from the input.
> SELECT year, q1, q2, q3, q4
  FROM (SELECT year, quarter, sales FROM sales) AS s
  PIVOT (sum(sales) AS sales
    FOR quarter
    IN (1 AS q1, 2 AS q2, 3 AS q3, 4 AS q4));
  2018  205   45   85   85
  2019  245  225  165  125

-- The same query without PIVOT
> SELECT year,
    sum(sales) FILTER(WHERE quarter = 1) AS q1,
    sum(sales) FILTER(WHERE quarter = 2) AS q2,
    sum(sales) FILTER(WHERE quarter = 3) AS q3,
    sum(sales) FILTER(WHERE quarter = 4) AS q4
    FROM sales
    GROUP BY year;

-- A PIVOT with multiple aggregations
> SELECT year, q1_total, q1_avg, q2_total, q2_avg, q3_total, q3_avg, q4_total, q4_avg
    FROM (SELECT year, quarter, sales FROM sales) AS s
    PIVOT (sum(sales) AS total, avg(sales) AS avg
      FOR quarter
      IN (1 AS q1, 2 AS q2, 3 AS q3, 4 AS q4));
 2018  205  102.5   45   22.5   85  42.5   85  42.5
 2019  245  122.5  225  112.5  165  82.5  125  62.5

-- The same query without PIVOT
> SELECT year,
         sum(sales) FILTER(WHERE quarter = 1) AS q1_total,
         avg(sales) FILTER(WHERE quarter = 1) AS q1_avg,
         sum(sales) FILTER(WHERE quarter = 2) AS q2_total,
         avg(sales) FILTER(WHERE quarter = 2) AS q2_avg,
         sum(sales) FILTER(WHERE quarter = 3) AS q3_total,
         avg(sales) FILTER(WHERE quarter = 3) AS q3_avg,
         sum(sales) FILTER(WHERE quarter = 4) AS q4_total,
         avg(sales) FILTER(WHERE quarter = 4) AS q4_avg
    FROM sales
    GROUP BY year;
 2018  205  102.5   45   22.5   85  42.5   85  42.5
 2019  245  122.5  225  112.5  165  82.5  125  62.5