Freigeben über


KI und Machine Learning in Databricks

In diesem Artikel werden die Tools beschrieben, die Mosaic AI (ehemals Databricks Machine Learning) bereitstellt, um Sie beim Erstellen von KI- und ML-Systemen zu unterstützen. Das Diagramm zeigt, wie verschiedene Produkte auf der Databricks-Plattform Sie bei der Implementierung Ihrer End-to-End-Workflows für die Entwicklung und Bereitstellung von KI- und ML-Systemen unterstützen.

Machine Learning-Diagramm: Modellentwicklung und -implementierung in Databricks

Generative KI auf Databricks.

Mosaic AI vereint den KI-Lebenszyklus von der Datensammlung und -vorbereitung bis hin zur Modellentwicklung und LLMOps zur Bereitstellung und Überwachung. Die folgenden Features sind speziell optimiert, um die Entwicklung von generativen KI-Anwendungen zu erleichtern:

Was ist generative KI?

Generative KI ist eine Art künstlicher Intelligenz, die sich auf die Fähigkeit von Computern konzentriert, Modelle zum Erstellen von Inhalten wie Bildern, Text, Code und synthetischen Daten zu verwenden.

Generative KI-Anwendungen basieren auf generativen KI-Modellen: großen Sprachmodellen (LLMs) und Foundation-Modellen.

  • LLMs sind Deep Learning-Modelle, die massive Datasets nutzen und trainieren, um in Sprachverarbeitungsaufgaben zu excelieren. Sie erstellen neue Textkombinationen, die natürliche Sprache basierend auf ihren Schulungsdaten nachahmen.
  • Generative KI-Modelle oder Foundation-Modelle sind große ML-Modelle, die mit der Absicht geschult wurden, dass sie für spezifischere Sprachverständnis- und Generationsaufgaben optimiert werden sollen. Diese Modelle werden verwendet, um Muster innerhalb der Eingabedaten zu erkennen.

Nachdem diese Modelle ihre Lernprozesse abgeschlossen haben, generieren sie statistisch wahrscheinliche Ausgaben, wenn sie dazu aufgefordert werden, und sie können eingesetzt werden, um verschiedene Aufgaben auszuführen, darunter:

  • Die Bildgenerierung basiert auf vorhandenen Oder mithilfe der Formatvorlage eines Bilds, um ein neues Bild zu ändern oder zu erstellen.
  • Sprachaufgaben wie Transkription, Übersetzung, Frage-/Antwortgenerierung und Interpretation der Absicht oder Bedeutung von Text.

Wichtig

Während viele LLMs oder andere generative KI-Modelle Sicherheitsvorkehrungen haben, können sie weiterhin schädliche oder ungenaue Informationen generieren.

Generative KI hat die folgenden Entwurfsmuster:

  • Prompt Engineering: Erstellen spezieller Prompts zur Steuerung des LLM-Verhaltens
  • Retrieval Augmented Generation (RAG): Kombinieren eines LLM mit externem Wissensabruf
  • Optimierung: Anpassen eines vortrainierten LLM an bestimmte Datasets von Domänen
  • Vorabtraining: Trainieren eines LLM von Grund auf

Machine Learning in Databricks

Mit Mosaic AI kann eine einzige Plattform für jeden Schritt des ML-Prozesses für die Entwicklung und Bereitstellung verwendet werden – von Rohdaten bis hin zu Rückschlusstabellen, die alle Anforderungen und Antworten für ein bereitgestelltes Modell speichern. Data Scientists, Data Engineers, ML Engineers und DevOps können ihre Aufgaben mit den gleichen Tools und einer Single Source of Truth für die Daten erledigen.

Mosaik AI vereint die Datenebene und die ML-Plattform. Alle Datenressourcen und Artefakte, z. B. Modelle und Funktionen, sind in einem einzigen Katalog auffindbar und kontrolliert. Das Verwenden einer einzigen Plattform für Daten und Modelle ermöglicht es, die Herkunft von den Rohdaten bis zum Produktionsmodell nachzuverfolgen. Die integrierte Daten- und Modellüberwachung speichert Qualitätsmetriken in Tabellen, die auch auf der Plattform gespeichert sind, wodurch die Grundursache von Problemen mit der Modellleistung leichter identifiziert werden kann. Weitere Informationen dazu, wie Databricks den vollständigen ML-Lebenszyklus und MLOps unterstützt, finden Sie unter MLOps-Workflows in Azure Databricks und MLOps Stacks: Modellentwicklungsprozess als Code.

Einige der wichtigsten Komponenten der Data Intelligence-Plattform sind die folgenden:

Aufgaben Komponente
Verwalten von Daten, Features, Modellen und Funktionen. Auch Ermittlung, Versionsverwaltung und Datenherkunft Unity Catalog
Nachverfolgen von Änderungen an Daten, Datenqualität und Modellvorhersagequalität Lakehouse Monitoring, Rückschlusstabellen
Featureentwicklung und -verwaltung Feature Engineering und Featurebereitstellung.
Trainieren von Modellen AutoML-, Databricks-Notizbücher
Nachverfolgen der Modellentwicklung MLflow-Nachverfolgung
Bereitstellen von benutzerdefinierten Modellen Mosaic AI Model Serving
Erstellen automatisierter Workflows und produktionsbereiter ETL-Pipelines Databricks-Aufträge
Git-Integration Databricks-Git-Ordner

Deep Learning in Databricks

Das Konfigurieren der Infrastruktur für Deep Learning-Anwendungen kann schwierig sein. Databricks Runtime für Machine Learning kümmert sich darum, mit Clustern, die integrierte kompatible Versionen der gängigsten Deep Learning-Bibliotheken wie TensorFlow, PyTorch und Keras aufweisen.

Databricks Runtime ML-Cluster umfassen auch die vorab konfigurierte GPU-Unterstützung mit Treibern und unterstützenden Bibliotheken. Es unterstützt auch Bibliotheken wie Ray zum Parallelisieren der Computeverarbeitung für die Skalierung von ML-Workflows und ML-Anwendungen.

Databricks Runtime ML-Cluster umfassen auch die vorab konfigurierte GPU-Unterstützung mit Treibern und unterstützenden Bibliotheken. Mosaic AI Model Serving ermöglicht die Erstellung skalierbarer GPU-Endpunkte für Deep Learning-Modelle ohne zusätzliche Konfiguration.

Für Machine Learning-Anwendungen wird die Verwendung eines Clusters empfohlen, in dem Databricks Runtime für Machine Learning ausgeführt wird. Siehe Erstellen eines Clusters mithilfe von Databricks Runtime ML.

Informationen zu den ersten Schritten mit Deep Learning in Databricks finden Sie unter:

Nächste Schritte

Informationen zu den ersten Schritten finden Sie unter:

Einen empfohlenen MLOps-Workflow für Databricks Mosaic AI finden Sie unter:

Weitere Informationen zu wichtigen Databricks Mosaik AI-Features finden Sie unter: