Freigeben über


Databricks Runtime 9.0 für ML (EoS)

Hinweis

Die Unterstützung für diese Databricks-Runtime-Version wurde beendet. Den End-of-Support-Termin finden Sie im Verlauf des Supportendes. Alle unterstützten Versionen von Databricks Runtime finden Sie unter Versionshinweise, Versionen und Kompatibilität von Databricks Runtime.

Diese Version wurde von Databricks im August 2021 veröffentlicht.

Databricks Runtime 9.0 für Machine Learning bietet eine sofort einsatzbereite Umgebung für maschinelles Lernen und Data Science auf Basis von Databricks Runtime 9.0 (EoS). Databricks Runtime ML enthält viele beliebte Machine Learning-Bibliotheken, einschließlich TensorFlow, PyTorch und XGBoost. Zudem wird ein verteiltes Deep Learning-Training mit Horovod unterstützt.

Weitere Informationen, einschließlich Anweisungen zum Erstellen eines Databricks Runtime ML-Clusters, finden Sie unter KI und Machine Learning in Databricks.

Korrektur

In einer früheren Version dieser Versionshinweise wurde angegeben, dass die Unterstützung für die Überwachung von CLUSTER-GPU-Metriken mit Ganglia Databricks Runtime in Version 9.0 9.0 ML GPU deaktiviert wurde. Dies gilt für Databricks Runtime 9.0 ML Beta, aber das Problem wurde mit Databricks Runtime 9.0 ML behoben. Die Anweisung wurde beendet.

Neue Features und Verbesserungen

Databricks Runtime 9.0 ML basiert auf Databricks Runtime 9.0. Informationen zu den Neuerungen in Databricks Runtime 9.0, einschließlich Apache Spark MLlib und SparkR, finden Sie in den Versionshinweisen zu Databricks Runtime 9.0 (EoS).

Automatische Databricks-Protokollierung (Public Preview)

Die automatische Datenverarbeitung von Databricks ist jetzt für Databricks Runtime 9.0 für Machine Learning ausgewählten Regionen verfügbar. Die automatische Databricks-Protokollierung ist eine Lösung ohne Programmieraufwand, die eine automatische Nachverfolgung von Experimenten für Machine Learning-Trainingssitzungen in Azure Databricks ermöglicht. Mithilfe der automatischen Databricks-Protokollierung werden Modellparameter, Metriken, Dateien und Informationen zur Herkunft automatisch erfasst, wenn Sie Modelle anhand einer Vielzahl beliebter Machine Learning-Bibliotheken trainieren. Trainingssitzungen werden als MLflow-Nachverfolgungsausführungen aufgezeichnet. Modelldateien werden auch nachverfolgt, sodass Sie sie problemlos in der MLflow-Modellregistrierung protokollieren und für die Bewertung in Echtzeit mithilfe der MLflow-Modellbereitstellung bereitstellen können.

Weitere Informationen zur automatischen Protokollierung in Databricks finden Sie unter Automatische Databricks-Protokollierung.

Verbesserungen am Featurespeicher von Databricks

Die Leistung beim Erstellen eines Trainingssets wurde verbessert, indem die Anzahl von Verknüpfungen über Quellfunktionstabellen hinweg minimiert wurde.

Die XGBoost-Integration mit PySpark unterstützt jetzt verteilte Trainings- und GPU-Cluster.

Weitere Informationen finden Sie unter Verwenden von XGBoost in Azure Databricks.

Wichtige Änderungen an der Databricks Runtime ML Python-Umgebung

Conda-Umgebungen werden zusammen mit dem Befehl %conda entfernt. Databricks Runtime 9.0-ML mit pip und virtualenv erstellt. Benutzerdefinierte Images, die Conda-basierte Umgebungen mit Databricks Container Services verwenden, werden weiterhin unterstützt, verfügen jedoch nicht über Bibliotheksfunktionen im Notebookbereich. Databricks empfiehlt die Verwendung von virtualenv-basierten Umgebungen mit Databricks Container Services und %pip für alle Bibliotheken im Notebookbereich.

Unter Databricks Runtime 9.0 (EoS) finden Sie die wichtigsten Änderungen an der Python-Umgebung von Databricks Runtime. Eine vollständige Liste der installierten Python-Pakete und deren Versionen finden Sie unter Python-Bibliotheken.

Python-Pakete, die ein Upgrade erhalten haben

  • mlflow 1.18.0 -> 1.19.0
  • nltk 3.5 -> 3.6.1

Hinzugefügte Python-Pakete

  • Prophet 1.0.1

Entfernte Python-Pakete

  • MKL
  • azure-core
  • azure-storage-blob
  • msrest
  • docker
  • querystring-parser
  • intel-openmp

Veraltete und nicht unterstützte Features

  • In Databricks Runtime 9.0 ML unterstützt HorovodRunner das Festlegen von np=0 nicht, wobei np die Anzahl der parallelen Prozesse ist, die für den Horovod-Auftrag verwendet werden sollen.
  • Databricks Runtime 9.0 ML r-base 4.1.0 mit R-Grafik-Engine Version 14. Dies wird von RStudio Server Version 1.2.x nicht unterstützt.
  • nvprof wird in Databricks Runtime 9.0 ML GPU entfernt.

Systemumgebung

Die Systemumgebung in Databricks Runtime 9.0 ML unterscheidet sich wie folgt von Databricks Runtime 9.0:

Bibliotheken

In den folgenden Abschnitten sind die Bibliotheken aufgelistet, die in Databricks Runtime 9.0 ML enthalten sind und sich von den in Databricks Runtime 9.0 enthaltenen Bibliotheken unterscheiden.

Inhalt dieses Abschnitts:

Bibliotheken der obersten Ebene

Databricks Runtime 9.0 ML enthält die folgenden Bibliotheken der obersten Ebene:

Python-Bibliotheken

Databricks Runtime 9.0 ML verwendet Virtualenv zur Verwaltung von Python-Paketen und enthält viele beliebte ML-Pakete.

Zusätzlich zu den Paketen, die in den folgenden Abschnitten aufgeführt sind, umfasst Databricks Runtime 9.0 ML auch die folgenden Pakete:

  • hyperopt 0.2.5.db2
  • sparkdl 2.2.0_db1
  • feature_store 0.3.3
  • automl 1.1.1

Python-Bibliotheken in CPU-Clustern

Bibliothek Version Bibliothek Version Bibliothek Version
absl-py 0.11.0 Antergos Linux 2015.10 (ISO-Rolling) appdirs 1.4.4
argon2-cffi 20.1.0 astor 0.8.1 astunparse 1.6.3
async-generator 1.10 attrs 20.3.0 backcall 0.2.0
bcrypt 3.2.0 bleach 3.3.0 boto3 1.16.7
botocore 1.19.7 Bottleneck 1.3.2 cachetools 4.2.2
certifi 2020.12.5 cffi 1.14.5 chardet 4.0.0
Klicken 7.1.2 cloudpickle 1.6.0 cmdstanpy 0.9.68
configparser 5.0.1 convertdate 2.3.2 cryptography 3.4.7
cycler 0.10.0 Cython 0.29.23 databricks-cli 0.14.3
dbus-python 1.2.16 decorator 5.0.6 defusedxml 0.7.1
dill 0.3.2 diskcache 5.2.1 distlib 0.3.2
distro-info 0.23ubuntu1 entrypoints 0,3 ephem 4.0.0.2
facets-overview 1.0.0 filelock 3.0.12 Flask 1.1.2
flatbuffers 1.12 fsspec 0.9.0 future 0.18.2
gast 0.4.0 gitdb 4.0.7 GitPython 3.1.12
google-auth 1.22.1 google-auth-oauthlib 0.4.2 google-pasta 0.2.0
grpcio 1.34.1 gunicorn 20.0.4 h5py 3.1.0
hijri-converter 2.1.3 holidays 0.10.5.2 horovod 0.22.1
htmlmin 0.1.12 idna 2.10 ImageHash 4.2.1
ipykernel 5.3.4 ipython 7.22.0 ipython-genutils 0.2.0
ipywidgets 7.6.4 isodate 0.6.0 itsdangerous 1.1.0
jedi 0.17.2 Jinja2 2.11.3 jmespath 0.10.0
joblib 1.0.1 joblibspark 0.3.0 jsonschema 3.2.0
jupyter-client 6.1.12 jupyter-core 4.7.1 jupyterlab-pygments 0.1.2
jupyterlab-widgets 1.0.1 keras-nightly 2.5.0.dev2021032900 Keras-Preprocessing 1.1.2
kiwisolver 1.3.1 koalas 1.8.1 korean-lunar-calendar 0.2.1
lightgbm 3.1.1 llvmlite 0.36.0 LunarCalendar 0.0.9
Mako 1.1.3 Markdown 3.3.3 MarkupSafe 1.1.1
matplotlib 3.4.2 missingno 0.5.0 mistune 0.8.4
mleap 0.17.0 mlflow-skinny 1.19.0 multimethod 1.4
nbclient 0.5.3 nbconvert 6.0.7 nbformat 5.1.3
nest-asyncio 1.5.1 networkx 2.5 nltk 3.6.1
Notebook 6.3.0 numba 0.53.1 numpy 1.19.2
oauthlib 3.1.0 opt-einsum 3.3.0 Packen 20.9
Pandas 1.2.4 pandas-profiling 3.0.0 pandocfilters 1.4.3
paramiko 2.7.2 parso 0.7.0 patsy 0.5.1
petastorm 0.11.1 pexpect 4.8.0 phik 0.12.0
pickleshare 0.7.5 Pillow 8.2.0 pip 21.0.1
plotly 4.14.3 prometheus-client 0.10.1 prompt-toolkit 3.0.17
prophet 1.0.1 protobuf 3.17.2 psutil 5.8.0
psycopg2 2.8.5 ptyprocess 0.7.0 pyarrow 4.0.0
pyasn1 0.4.8 pyasn1-modules 0.2.8 pycparser 2,20
pydantic 1.8.2 Pygments 2.8.1 PyGObject 3.36.0
PyMeeus 0.5.11 PyNaCl 1.3.0 pyodbc 4.0.30
pyparsing 2.4.7 pyrsistent 0.17.3 pystan 2.19.1.1
python-apt 2.0.0+ubuntu0.20.4.6 Python-dateutil 2.8.1 python-editor 1.0.4
pytz 2020.5 PyWavelets 1.1.1 PyYAML 5.4.1
pyzmq 20.0.0 regex 2021.4.4 requests 2.25.1
requests-oauthlib 1.3.0 requests-unixsocket 0.2.0 retrying 1.3.3
rsa 4.7.2 s3transfer 0.3.7 scikit-learn 0.24.1
scipy 1.6.2 seaborn 0.11.1 Send2Trash 1.5.0
setuptools 52.0.0 setuptools-git 1.2 shap 0.39.0
simplejson 3.17.2 sechs 1.15.0 slicer 0.0.7
smmap 3.0.5 spark-tensorflow-distributor 0.1.0 sqlparse 0.4.1
ssh-import-id 5.10 statsmodels 0.12.2 tabulate 0.8.7
tangled-up-in-unicode 0.1.0 tensorboard 2.5.0 tensorboard-data-server 0.6.1
tensorboard-plugin-wit 1.8.0 tensorflow-cpu 2.5.0 tensorflow-estimator 2.5.0
termcolor 1.1.0 terminado 0.9.4 testpath 0.4.4
threadpoolctl 2.1.0 torch 1.9.0+cpu torchvision 0.10.0+cpu
tornado 6.1 tqdm 4.59.0 traitlets 5.0.5
typing-extensions 3.7.4.3 ujson 4.0.2 unattended-upgrades 0,1
urllib3 1.25.11 virtualenv 20.4.1 Visionen 0.7.1
wcwidth 0.2.5 webencodings 0.5.1 websocket-client 0.57.0
Werkzeug 1.0.1 wheel 0.36.2 widgetsnbextension 3.5.1
wrapt 1.12.1 xgboost 1.4.2

Python-Bibliotheken für GPU-Cluster

Bibliothek Version Bibliothek Version Bibliothek Version
absl-py 0.11.0 Antergos Linux 2015.10 (ISO-Rolling) appdirs 1.4.4
argon2-cffi 20.1.0 astor 0.8.1 astunparse 1.6.3
async-generator 1.10 attrs 20.3.0 backcall 0.2.0
bcrypt 3.2.0 bleach 3.3.0 boto3 1.16.7
botocore 1.19.7 Bottleneck 1.3.2 cachetools 4.2.2
certifi 2020.12.5 cffi 1.14.5 chardet 4.0.0
Klicken 7.1.2 cloudpickle 1.6.0 cmdstanpy 0.9.68
configparser 5.0.1 convertdate 2.3.2 cryptography 3.4.7
cycler 0.10.0 Cython 0.29.23 databricks-cli 0.14.3
dbus-python 1.2.16 decorator 5.0.6 defusedxml 0.7.1
dill 0.3.2 diskcache 5.2.1 distlib 0.3.2
distro-info 0.23ubuntu1 entrypoints 0,3 ephem 4.0.0.2
facets-overview 1.0.0 filelock 3.0.12 Flask 1.1.2
flatbuffers 1.12 fsspec 0.9.0 future 0.18.2
gast 0.4.0 gitdb 4.0.7 GitPython 3.1.12
google-auth 1.22.1 google-auth-oauthlib 0.4.2 google-pasta 0.2.0
grpcio 1.34.1 gunicorn 20.0.4 h5py 3.1.0
hijri-converter 2.1.3 holidays 0.10.5.2 horovod 0.22.1
htmlmin 0.1.12 idna 2.10 ImageHash 4.2.1
ipykernel 5.3.4 ipython 7.22.0 ipython-genutils 0.2.0
ipywidgets 7.6.4 isodate 0.6.0 itsdangerous 1.1.0
jedi 0.17.2 Jinja2 2.11.3 jmespath 0.10.0
joblib 1.0.1 joblibspark 0.3.0 jsonschema 3.2.0
jupyter-client 6.1.12 jupyter-core 4.7.1 jupyterlab-pygments 0.1.2
jupyterlab-widgets 1.0.1 keras-nightly 2.5.0.dev2021032900 Keras-Preprocessing 1.1.2
kiwisolver 1.3.1 koalas 1.8.1 korean-lunar-calendar 0.2.1
lightgbm 3.1.1 llvmlite 0.36.0 LunarCalendar 0.0.9
Mako 1.1.3 Markdown 3.3.3 MarkupSafe 1.1.1
matplotlib 3.4.2 missingno 0.5.0 mistune 0.8.4
mleap 0.17.0 mlflow-skinny 1.19.0 multimethod 1.4
nbclient 0.5.3 nbconvert 6.0.7 nbformat 5.1.3
nest-asyncio 1.5.1 networkx 2.5 nltk 3.6.1
Notebook 6.3.0 numba 0.53.1 numpy 1.19.2
oauthlib 3.1.0 opt-einsum 3.3.0 Packen 20.9
Pandas 1.2.4 pandas-profiling 3.0.0 pandocfilters 1.4.3
paramiko 2.7.2 parso 0.7.0 patsy 0.5.1
petastorm 0.11.1 pexpect 4.8.0 phik 0.12.0
pickleshare 0.7.5 Pillow 8.2.0 pip 21.0.1
plotly 4.14.3 prometheus-client 0.11.0 prompt-toolkit 3.0.17
prophet 1.0.1 protobuf 3.17.2 psutil 5.8.0
psycopg2 2.8.5 ptyprocess 0.7.0 pyarrow 4.0.0
pyasn1 0.4.8 pyasn1-modules 0.2.8 pycparser 2,20
pydantic 1.8.2 Pygments 2.8.1 PyGObject 3.36.0
PyMeeus 0.5.11 PyNaCl 1.3.0 pyodbc 4.0.30
pyparsing 2.4.7 pyrsistent 0.17.3 pystan 2.19.1.1
python-apt 2.0.0+ubuntu0.20.4.6 Python-dateutil 2.8.1 python-editor 1.0.4
pytz 2020.5 PyWavelets 1.1.1 PyYAML 5.4.1
pyzmq 20.0.0 regex 2021.4.4 requests 2.25.1
requests-oauthlib 1.3.0 requests-unixsocket 0.2.0 retrying 1.3.3
rsa 4.7.2 s3transfer 0.3.7 scikit-learn 0.24.1
scipy 1.6.2 seaborn 0.11.1 Send2Trash 1.5.0
setuptools 52.0.0 setuptools-git 1.2 shap 0.39.0
simplejson 3.17.2 sechs 1.15.0 slicer 0.0.7
smmap 3.0.5 spark-tensorflow-distributor 0.1.0 sqlparse 0.4.1
ssh-import-id 5.10 statsmodels 0.12.2 tabulate 0.8.7
tangled-up-in-unicode 0.1.0 tensorboard 2.5.0 tensorboard-data-server 0.6.1
tensorboard-plugin-wit 1.8.0 tensorflow 2.5.0 tensorflow-estimator 2.5.0
termcolor 1.1.0 terminado 0.9.4 testpath 0.4.4
threadpoolctl 2.1.0 torch 1.9.0+cu111 torchvision 0.10.0+cu111
tornado 6.1 tqdm 4.59.0 traitlets 5.0.5
typing-extensions 3.7.4.3 ujson 4.0.2 unattended-upgrades 0,1
urllib3 1.25.11 virtualenv 20.4.1 Visionen 0.7.1
wcwidth 0.2.5 webencodings 0.5.1 websocket-client 0.57.0
Werkzeug 1.0.1 wheel 0.36.2 widgetsnbextension 3.5.1
wrapt 1.12.1 xgboost 1.4.2

Spark-Pakete mit Python-Modulen

Spark-Paket Python-Modul Version
graphframes graphframes 0.8.1-db3-spark3.1

R-Bibliotheken

Die R-Bibliotheken sind mit den R-Bibliotheken in Databricks Runtime 9.0 identisch.

Java- und Scala-Bibliotheken (Scala 2.12-Cluster)

Zusätzlich zu Java- und Scala-Bibliotheken in Databricks Runtime 9.0 enthält Databricks Runtime 9.0 ML die folgenden JAR-Dateien:

CPU-Cluster

Gruppen-ID Artefakt-ID Version
com.typesafe.akka akka-actor_2.12 2.5.23
ml.combust.mleap mleap-databricks-runtime_2.12 0.17.0-4882dc3
ml.dmlc xgboost4j-spark_2.12 1.4.1
ml.dmlc xgboost4j_2.12 1.4.1
org.graphframes graphframes_2.12 0.8.1-db2-spark3.1
org.mlflow mlflow-client 1.19.0
org.mlflow mlflow-spark 1.19.0
org.scala-lang.modules scala-java8-compat_2.12 0.8.0
org.tensorflow spark-tensorflow-connector_2.12 1.15.0

GPU-Cluster

Gruppen-ID Artefakt-ID Version
com.typesafe.akka akka-actor_2.12 2.5.23
ml.combust.mleap mleap-databricks-runtime_2.12 0.17.0-4882dc3
ml.dmlc xgboost4j-gpu_2.12 1.4.1
ml.dmlc xgboost4j-spark-gpu_2.12 1.4.1
org.graphframes graphframes_2.12 0.8.1-db2-spark3.1
org.mlflow mlflow-client 1.19.0
org.mlflow mlflow-spark 1.19.0
org.scala-lang.modules scala-java8-compat_2.12 0.8.0
org.tensorflow spark-tensorflow-connector_2.12 1.15.0