Upsertvorgänge in Azure Cosmos DB for Apache Cassandra in Spark
GILT FÜR: Cassandra
In diesem Artikel wird erläutert, wie Sie in Spark einen Upsertvorgang für Daten in Azure Cosmos DB for Apache Cassandra ausführen.
API für Cassandra-Konfiguration
Legen Sie in Ihrem Notebookcluster die folgende Spark-Konfiguration fest. Dieser Schritt muss nur einmal ausgeführt werden.
//Connection-related
spark.cassandra.connection.host YOUR_ACCOUNT_NAME.cassandra.cosmosdb.azure.com
spark.cassandra.connection.port 10350
spark.cassandra.connection.ssl.enabled true
spark.cassandra.auth.username YOUR_ACCOUNT_NAME
spark.cassandra.auth.password YOUR_ACCOUNT_KEY
// if using Spark 2.x
// spark.cassandra.connection.factory com.microsoft.azure.cosmosdb.cassandra.CosmosDbConnectionFactory
//Throughput-related...adjust as needed
spark.cassandra.output.batch.size.rows 1
// spark.cassandra.connection.connections_per_executor_max 10 // Spark 2.x
spark.cassandra.connection.remoteConnectionsPerExecutor 10 // Spark 3.x
spark.cassandra.output.concurrent.writes 1000
spark.cassandra.concurrent.reads 512
spark.cassandra.output.batch.grouping.buffer.size 1000
spark.cassandra.connection.keep_alive_ms 600000000
Hinweis
Wenn Sie Spark 3 verwenden, müssen Sie die Hilfs- und Verbindungsfactory von Azure Cosmos DB nicht installieren. Sie sollten auch remoteConnectionsPerExecutor
anstelle von connections_per_executor_max
für den Spark 3-Connector verwenden (siehe oben).
Warnung
Die in diesem Artikel gezeigten Spark 3-Beispiele wurden mit Spark Version 3.2.1 und dem entsprechenden Cassandra Spark-Connector com.datastax.spark:spark-cassandra-connector-assembly_2.12:3.2.0 getestet. Höhere Versionen von Spark und/oder dem Cassandra-Connector funktionieren möglicherweise nicht wie erwartet.
Datenrahmen-API
Erstellen eines Datenrahmens
import org.apache.spark.sql.cassandra._
//Spark connector
import com.datastax.spark.connector._
import com.datastax.spark.connector.cql.CassandraConnector
//if using Spark 2.x, CosmosDB library for multiple retry
//import com.microsoft.azure.cosmosdb.cassandra
// (1) Update: Changing author name to include prefix of "Sir"
// (2) Insert: adding a new book
val booksUpsertDF = Seq(
("b00001", "Sir Arthur Conan Doyle", "A study in scarlet", 1887),
("b00023", "Sir Arthur Conan Doyle", "A sign of four", 1890),
("b01001", "Sir Arthur Conan Doyle", "The adventures of Sherlock Holmes", 1892),
("b00501", "Sir Arthur Conan Doyle", "The memoirs of Sherlock Holmes", 1893),
("b00300", "Sir Arthur Conan Doyle", "The hounds of Baskerville", 1901),
("b09999", "Sir Arthur Conan Doyle", "The return of Sherlock Holmes", 1905)
).toDF("book_id", "book_author", "book_name", "book_pub_year")
booksUpsertDF.show()
Durchführen von Upsert für Daten
// Upsert is no different from create
booksUpsertDF.write
.mode("append")
.format("org.apache.spark.sql.cassandra")
.options(Map( "table" -> "books", "keyspace" -> "books_ks"))
.save()
Aktualisieren von Daten
//Cassandra connector instance
val cdbConnector = CassandraConnector(sc)
//This runs on the driver, leverage only for one off updates
cdbConnector.withSessionDo(session => session.execute("update books_ks.books set book_price=99.33 where book_id ='b00300' and book_pub_year = 1901;"))
RDD-API
Hinweis
Der Upsert-Vorgang aus der RDD-API ist mit dem Create-Vorgang identisch.
Nächste Schritte
Lesen Sie die folgenden Artikel, um zu erfahren, wie Sie andere Vorgänge an den Daten ausführen, die in Azure Cosmos DB for Apache Cassandra-Tabellen gespeichert sind: