Exploring the Compound File Binary Format (part deux)
Exploring the Compound File Binary Format (part deux)
In this, part ni (pronounced ne; Japanese for deux), I pick up where we left off. Where were we? I had just demonstrated that the IStorage::CopyTo() method, at least Microsoft’s default implementation provided in Windows’ ole32.dll, will indeed do what it claims which is to “…order the contents of streams sequentially…". As we discovered, however, the data in the ministream is not ordered as the other “standard” streams are. As a refresher, the ministream is also known as the “Root Entry” stream and is where all streams that contain less than 4096 bytes of data reside. After using the CopyTo() method, we noticed that the ministream was still discontiguous (new word). We reasoned that although the streams in the ministream are written by CopyTo() in the same manner that all the others are, the ministream needs to grow and therefore must interleave allocations of sectors with the other streams as well as the internal structures of the compound file like the FAT, DiFAT, Directory, etc… It’s growth doesn’t happen once but possibly many times and other sector allocations happen in between these spurts of growth. Hence the fragmentation.
To verify this behaviour, I created a sample compound file and wrote three streams to it in such a sequence that it would most likely produce fragmentation. The algorithm went something like Figure 0.
1. Open three streams: stm1, stm2, stm3 2. write 2 minisectors worth of data to stm1 3. write 1 minisector worth of data to stm2 4. delete stm1 5. commit the root storage 6. write 8 minisectors worth of data to stm3 7. commit the root storage again |
Figure 0: Stream fragmentation algorithm
I wrote ‘1’s to stm1, ‘2’s to stm2, ‘3’s to stms3 so they would be easily identifiable. After using this algorithm, I had a ministream that looked like Figure 1.
0C00h: 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 2222222222222222 0C10h: 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 2222222222222222 0C20h: 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 2222222222222222 0C30h: 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 2222222222222222 ...1000h: 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 3333333333333333 1010h: 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 3333333333333333 1020h: 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 3333333333333333 1030h: 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 3333333333333333 ...1200h: 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 2222222222222222 1210h: 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 2222222222222222 1220h: 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 2222222222222222 1230h: 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 2222222222222222 1240h: 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 3333333333333333 1250h: 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 3333333333333333 1260h: 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 3333333333333333 1270h: 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 3333333333333333 … (more 33’s) 13F0h: 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 3333333333333333 |
Figure 1: Fragmented streams
The ellipses (except for the last) are segments of the file that don’t contain valid stream data. As you can see, stm2 and stm3 are both fragmented. stm2 starts at 0C00h for 64 bytes but then discontinues at 0C30h and starts again at 1200h. Likewise, stm3 starts at 1000h and temporarily ends at 1030h, continuing at 1240h. Normally, the data is not “marked” nicely like this and is usually spread across a more vast number of sectors making it very tedious to piece together.
The goal: to cause the stream data to defragment or order itself contiguously without having to read the raw bytes, traverse all the internal structures and rewrite the entire compound file.
This is actually fairly straight forward, although the resulting code is more complex than our first attempt at defragmenting the stream data in the file. As you might remember from last time, we simply copied the entire compound file to another one named <filename>.defrag.<ext> using the IStorage::CopyTo(). As explained, earlier, this left the ministream potentially fragmented. We can use the same approach, copying element by element to a new location but will have to separate the copying of the ministream from the rest of the streams, storages and all internal structures (FAT, DiFAT, Directory…). In order to do this, we need to save the ministream somewhere, copy just the remaining elements and then write the ministream elements, one by one so that each element is written in its entirety before writing the next. This is what ensures contiguity.
Refining the algorithm to make it easier to understand resulted in the following steps:
1. Open the source compound file 2. Open the target (to be defragmented) compound file 3. Open a new temporary storage or compound file 4. Copy the entire source compound file to the temporary storage 5. Copy only the non-ministream elements of the source compound file to the target file using IStorage::CopyTo() like before 6. Copy the ministream elements to the target |
Figure 2: General algorithm to separate copying of ministream and non-ministream elements
This algorithm will cause the non-ministream elements to be written first and then the ministream elements, avoiding the interlacing allocation of sectors. However, in order for step #5 to work, we need to remove the ministream elements from the source (after saving them of course) before the CopyTo(). Also, in order to remove the ministream elements from a compound file, you basically need to traverse the entire tree structure, testing streams for sizes of < 4096 and then call IStorage::DestroyElement() on them. Because this is a tree structure, iterating over the tree can be made much more readable by using recursion. We love recursion, right? In a recursive algorithm for a tree we simply enumerate the elements in the current storage object, and if the current element is a stream, we can test it for residence in the ministream (<4096). If it’s not a stream, simply recurse or call the containing function again passing this current element as the argument. Pretty simple.
Here's the pseudo code for the algorithm:
function remove_mini(element){ while (more_elements) { element.enum_elements(¤t)) if (current is a stream) { if (current < 4096) delete current; } else remove_mini(current); }} |
Figure 3a: Recursive function to remove ministream elements from a storage object
The function to “prune” the ministreams out of a storage looks like this:
#define LESSTHAN(x,y) ((x.HighPart <= y.HighPart) && (x.LowPart < y.LowPart)) HRESULT PruneStgMiniStream(LPSTORAGE lpSrcStg){ HRESULT hr = S_OK; LPENUMSTATSTG lpEnumStatStg = NULL; hr = lpSrcStg->EnumElements(NULL, NULL, NULL, &lpEnumStatStg); ULONG cfch = 0; STATSTG tstat; while (lpEnumStatStg->Next(1, &tstat, &cfch)==S_OK) { ULARGE_INTEGER mini_limit = {4096,0}; // if it's a stream, it's not 0 bytes and it's less than 4096 bytes, then we delete it. if ((tstat.type == STGTY_STREAM) && ((tstat.cbSize.LowPart > 0) || (tstat.cbSize.HighPart > 0)) && (LESSTHAN(tstat.cbSize, mini_limit))) lpSrcStg->DestroyElement(tstat.pwcsName); if (tstat.type == STGTY_STORAGE) { LPSTORAGE lpNewStg = NULL; hr = lpSrcStg->OpenStorage(tstat.pwcsName, NULL, STGM_READWRITE|STGM_SHARE_EXCLUSIVE , NULL, NULL, &lpNewStg); PruneStgMiniStream(lpNewStg); lpNewStg->Release(); // Caller releases. } } lpEnumStatStg->Release(); return hr;} |
Figure 3b: Recursive function to remove ministream elements from a storage object
PruneStgMiniStream() is called again within itself, passing lpNewStg as the new lpSrcStg parameter.
So once steps 1-5 (Figure 2) have been accomplished, the ministreams have to be copied from the temporary storage to the target. This is a little more complicated because we can’t just create a ministream element wherever we want, i.e. in the root storage of the target. We have to make sure that each ministream element gets copied to its proper branch in the tree. Thinking about this reminded me of those mechanical tracing devices we played with as kids allowing us to copy a drawing by having a mechanical arm mimic each movement. In the same way, the algorithm can simply use the temporary storage tree structure as the traced shape, telling us where to deposit the ministream elements in the target, which is missing them. I was able to use the same basic form as the PruneStgMiniStream() function but instead of deleting the ministream elements, it creates the element in the target and copies the data. Here’s the resulting function to copy the ministream elements to the target:
Here's the pseudo code for the algorithm:
function copy_mini(src_element, dst_element){ while (more_elements) { src_element.enum_elements(&src_current)) if (src_current is a stream) { if (src_current < 4096) dst_element.create(src_current.name, &dst_current); src_current.copyto(dst_current); } else { src_element.open(&src_current); dst_element.open(&dst_current); copy_mini(src_current, dst_current); } }} |
Figure 4a: Recursive function to remove ministream elements from a storage object
Here’s the resulting function to copy the ministream elements to the target:
HRESULT CopyStgMiniStream(LPSTORAGE lpSrcStg, LPSTORAGE lpDestStg){ HRESULT hr = S_OK; LPENUMSTATSTG lpEnumStatStg = NULL; hr = lpSrcStg->EnumElements(NULL, NULL, NULL, &lpEnumStatStg); // The assumption here is that the two input storages are identical except for // the ministream. Therefore, we only need to enumerate on one since the other structure // will be consistent. However, when we recurse, we drop down a level in the tree which means // we need to do that to both storages. ULONG cfch = 0; STATSTG tstat; while (lpEnumStatStg->Next(1, &tstat, &cfch)==S_OK) { LPSTREAM lpStmSrcTemp = NULL; LPSTREAM lpStmDestTemp = NULL; ULARGE_INTEGER nread, nwritten; ULARGE_INTEGER mini_limit = {4096,0}; // if it's a stream, it's not 0 bytes and it's less than 4096 bytes, then we copy it. if ((tstat.type == STGTY_STREAM) && ((tstat.cbSize.LowPart > 0) || (tstat.cbSize.HighPart > 0)) && (LESSTHAN(tstat.cbSize, mini_limit))) { hr = lpSrcStg->OpenStream(tstat.pwcsName, NULL, STGM_READ|STGM_SHARE_EXCLUSIVE, NULL, &lpStmSrcTemp); hr = lpDestStg->CreateStream(tstat.pwcsName, STGM_WRITE|STGM_SHARE_EXCLUSIVE, NULL, NULL, &lpStmDestTemp); hr = lpStmSrcTemp->CopyTo(lpStmDestTemp, tstat.cbSize, &nread, &nwritten); lpStmSrcTemp->Release(); lpStmDestTemp->Release(); } if (tstat.type == STGTY_STORAGE) { LPSTORAGE lpNewSrcStg = NULL; LPSTORAGE lpNewDestStg = NULL; hr = lpSrcStg->OpenStorage(tstat.pwcsName, NULL, STGM_READ|STGM_SHARE_EXCLUSIVE , NULL, NULL, &lpNewSrcStg); hr = lpDestStg->OpenStorage(tstat.pwcsName, NULL, STGM_READWRITE|STGM_SHARE_EXCLUSIVE , NULL, NULL, &lpNewDestStg); CopyStgMiniStream(lpNewSrcStg, lpNewDestStg); lpNewSrcStg->Release(); // Caller releases. lpNewDestStg->Release(); // Caller releases. } } lpEnumStatStg->Release(); return hr;} |
Figure 4: Function to copy ministream elements to a target storage object.
The important functions have been written, now to just put it all together. The ministreams have to be deleted from either the source or the temporary storage before copying to the target storage. Because we don’t want to modify the source storage, it’s better to use the temporary storage for “pruning”, then copy all but the ministream elements from the temporary to the target storage. So the code uses the algorithm but switching the source and temporary storages:
… <omitted redundant code from original blog> LPSTORAGE lpTempStg = NULL; hr = StgCreateStorageEx(lptszTemp, STGM_CREATE|STGM_TRANSACTED|STGM_READWRITE| STGM_SHARE_EXCLUSIVE, STGFMT_STORAGE, 0, NULL, NULL, IID_IStorage, (LPVOID*) &lpTempStg); LPSTORAGE lpDestStg = NULL; hr = StgCreateStorageEx(lptszTarget, STGM_CREATE|STGM_TRANSACTED | STGM_READWRITE | STGM_SHARE_EXCLUSIVE, STGFMT_STORAGE, 0, NULL, NULL, IID_IStorage, (LPVOID*) &lpDestStg); … <omission> hr = lpSrcStg->CopyTo(NULL, NULL, NULL, lpTempStg); // this deletes all the streams that live in the ministream hr = PruneStgMiniStream(lpTempStg); // copy everything but the ministream data hr = lpTempStg->CopyTo(NULL, NULL, NULL, lpDestStg); // now copy the ministreams to the destination storage hr = CopyStgMiniStream(lpSrcStg, lpDestStg); hr = lpDestStg->Commit(STGC_CONSOLIDATE); … <omission> |
Figure 5: mainline code
I’ve omitted code that didn’t change much. You can see that a new call to StgCreateStorageEx() creates the temp storage. Also, it’s important to Commit() the temporary storage after “pruning” the ministream elements as well as Commit()’ing the destination storage after copying to it. This ensures that the tree structure and data are written to disk in their final form. The resulting file (Figure 6) has a ministream that is contiguous and therefore easier to follow application structures and data:
0C00h: 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 3333333333333333 0C10h: 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 3333333333333333 0C20h: 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 3333333333333333 0C30h: 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 3333333333333333 0C40h: 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 3333333333333333 0C50h: 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 3333333333333333 0C60h: 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 3333333333333333 0C70h: 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 3333333333333333 0C80h: 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 3333333333333333 0C90h: 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 3333333333333333 0CA0h: 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 3333333333333333 0CB0h: 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 3333333333333333 0CC0h: 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 3333333333333333 0CD0h: 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 3333333333333333 0CE0h: 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 3333333333333333 0CF0h: 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 3333333333333333 0D00h: 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 3333333333333333 0D10h: 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 3333333333333333 0D20h: 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 3333333333333333 0D30h: 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 3333333333333333 0D40h: 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 3333333333333333 0D50h: 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 3333333333333333 0D60h: 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 3333333333333333 0D70h: 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 3333333333333333 0D80h: 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 3333333333333333 0D90h: 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 3333333333333333 0DA0h: 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 3333333333333333 0DB0h: 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 3333333333333333 0DC0h: 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 3333333333333333 0DD0h: 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 3333333333333333 0DE0h: 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 3333333333333333 0DF0h: 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 3333333333333333 0E00h: 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 2222222222222222 0E10h: 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 2222222222222222 0E20h: 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 2222222222222222 0E30h: 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 2222222222222222 |
Figure 6: Defragmented streams
I’ve attached defrag.cpp to this blog so you can see the code in its completeness. Using only structured storage API’s, I’ve shown here that it’s possible to order the application stream data in a compound file to be contiguous thereby making it much less formidable to traverse.