Hinweis
Für den Zugriff auf diese Seite ist eine Autorisierung erforderlich. Sie können versuchen, sich anzumelden oder das Verzeichnis zu wechseln.
Für den Zugriff auf diese Seite ist eine Autorisierung erforderlich. Sie können versuchen, das Verzeichnis zu wechseln.
This example consists of the 3 map/reduce applications that Owen O'Malley and Arun Murthy used win the annual general purpose (daytona) terabyte sort benchmark @ sortbenchmark.org. This sample is part of prebuilt package in your Hadoop on Azure portal so Just like any other prebuilt sample you can deploy it to cluster as below:
There are three steps to this example:
1. TeraGen is a map/reduce program to generate the data.
2. TeraSort samples the input data and uses map/reduce to sort the data into a total order.
3. TeraValidate is a map/reduce program that validates the output is sorted.
The example deployment is pre-loaded with the first Teragen job.
1. Teragen (sample loaded default)
> hadoop jar hadoop-examples-0.20.203.1-SNAPSHOT.jar teragen "-Dmapred.map.tasks=50" 100000000 /example/data/10GB-sort-input
Once sample is deployed to the cluster, you can verify the parameters first and then start the Job:
Once the Job is started it, first creates the input data in 50 different files on HDFS...
....which you can verify in HDFS management as below:
Finally when the Job is completed the results are displayed as below:
10GB Terasort Example ••••• Job Info Status: Completed Sucessfully Type: jar Start time: 12/30/2011 5:54:16 PM End time: 12/30/2011 6:04:59 PM Exit code: 0 Command call hadoop.cmd jar hadoop-examples-0.20.203.1-SNAPSHOT.jar teragen "-Dmapred.map.tasks=50" 100000000 /example/data/10GB-sort-input Output (stdout) Generating 100000000 using 50 maps with step of 2000000 Errors (stderr) 11/12/30 17:54:20 INFO mapred.JobClient: map 0% reduce 0% 11/12/30 17:54:49 INFO mapred.JobClient: map 2% reduce 0% 11/12/30 17:54:52 INFO mapred.JobClient: map 4% reduce 0% 11/12/30 17:54:55 INFO mapred.JobClient: map 5% reduce 0% 11/12/30 17:55:01 INFO mapred.JobClient: map 6% reduce 0% 11/12/30 17:55:22 INFO mapred.JobClient: map 7% reduce 0% 11/12/30 17:55:28 INFO mapred.JobClient: map 8% reduce 0% 11/12/30 17:55:43 INFO mapred.JobClient: map 9% reduce 0% 11/12/30 17:55:46 INFO mapred.JobClient: map 12% reduce 0% 11/12/30 17:55:49 INFO mapred.JobClient: map 14% reduce 0% 11/12/30 17:56:10 INFO mapred.JobClient: map 15% reduce 0% 11/12/30 17:56:13 INFO mapred.JobClient: map 16% reduce 0% 11/12/30 17:56:28 INFO mapred.JobClient: map 18% reduce 0% 11/12/30 17:56:31 INFO mapred.JobClient: map 19% reduce 0% 11/12/30 17:56:34 INFO mapred.JobClient: map 20% reduce 0% 11/12/30 17:56:43 INFO mapred.JobClient: map 21% reduce 0% 11/12/30 17:56:49 INFO mapred.JobClient: map 22% reduce 0% 11/12/30 17:56:52 INFO mapred.JobClient: map 23% reduce 0% 11/12/30 17:56:58 INFO mapred.JobClient: map 24% reduce 0% 11/12/30 17:57:01 INFO mapred.JobClient: map 25% reduce 0% 11/12/30 17:57:04 INFO mapred.JobClient: map 26% reduce 0% 11/12/30 17:57:10 INFO mapred.JobClient: map 28% reduce 0% 11/12/30 17:57:19 INFO mapred.JobClient: map 29% reduce 0% 11/12/30 17:57:22 INFO mapred.JobClient: map 30% reduce 0% 11/12/30 17:57:28 INFO mapred.JobClient: map 31% reduce 0% 11/12/30 17:57:31 INFO mapred.JobClient: map 32% reduce 0% 11/12/30 17:58:04 INFO mapred.JobClient: map 33% reduce 0% 11/12/30 17:58:07 INFO mapred.JobClient: map 35% reduce 0% 11/12/30 17:58:10 INFO mapred.JobClient: map 36% reduce 0% 11/12/30 17:58:13 INFO mapred.JobClient: map 37% reduce 0% 11/12/30 17:58:19 INFO mapred.JobClient: map 38% reduce 0% 11/12/30 17:58:25 INFO mapred.JobClient: map 39% reduce 0% 11/12/30 17:58:34 INFO mapred.JobClient: map 40% reduce 0% 11/12/30 17:58:37 INFO mapred.JobClient: map 42% reduce 0% 11/12/30 17:58:44 INFO mapred.JobClient: map 43% reduce 0% 11/12/30 17:58:47 INFO mapred.JobClient: map 44% reduce 0% 11/12/30 17:58:52 INFO mapred.JobClient: map 45% reduce 0% 11/12/30 17:58:59 INFO mapred.JobClient: map 46% reduce 0% 11/12/30 17:59:23 INFO mapred.JobClient: map 48% reduce 0% 11/12/30 17:59:26 INFO mapred.JobClient: map 49% reduce 0% 11/12/30 17:59:32 INFO mapred.JobClient: map 50% reduce 0% 11/12/30 17:59:40 INFO mapred.JobClient: map 51% reduce 0% 11/12/30 17:59:44 INFO mapred.JobClient: map 52% reduce 0% 11/12/30 17:59:46 INFO mapred.JobClient: map 53% reduce 0% 11/12/30 17:59:47 INFO mapred.JobClient: map 54% reduce 0% 11/12/30 17:59:58 INFO mapred.JobClient: map 55% reduce 0% 11/12/30 18:00:11 INFO mapred.JobClient: map 56% reduce 0% 11/12/30 18:00:14 INFO mapred.JobClient: map 58% reduce 0% 11/12/30 18:00:16 INFO mapred.JobClient: map 59% reduce 0% 11/12/30 18:00:20 INFO mapred.JobClient: map 60% reduce 0% 11/12/30 18:00:23 INFO mapred.JobClient: map 61% reduce 0% 11/12/30 18:00:31 INFO mapred.JobClient: map 62% reduce 0% 11/12/30 18:00:50 INFO mapred.JobClient: map 63% reduce 0% 11/12/30 18:00:53 INFO mapred.JobClient: map 65% reduce 0% 11/12/30 18:00:59 INFO mapred.JobClient: map 66% reduce 0% 11/12/30 18:01:10 INFO mapred.JobClient: map 67% reduce 0% 11/12/30 18:01:13 INFO mapred.JobClient: map 68% reduce 0% 11/12/30 18:01:14 INFO mapred.JobClient: map 69% reduce 0% 11/12/30 18:01:17 INFO mapred.JobClient: map 70% reduce 0% 11/12/30 18:01:20 INFO mapred.JobClient: map 71% reduce 0% 11/12/30 18:01:23 INFO mapred.JobClient: map 72% reduce 0% 11/12/30 18:01:37 INFO mapred.JobClient: map 73% reduce 0% 11/12/30 18:01:38 INFO mapred.JobClient: map 74% reduce 0% 11/12/30 18:01:50 INFO mapred.JobClient: map 75% reduce 0% 11/12/30 18:02:07 INFO mapred.JobClient: map 76% reduce 0% 11/12/30 18:02:11 INFO mapred.JobClient: map 77% reduce 0% 11/12/30 18:02:14 INFO mapred.JobClient: map 78% reduce 0% 11/12/30 18:02:17 INFO mapred.JobClient: map 79% reduce 0% 11/12/30 18:02:20 INFO mapred.JobClient: map 80% reduce 0% 11/12/30 18:02:32 INFO mapred.JobClient: map 81% reduce 0% 11/12/30 18:02:44 INFO mapred.JobClient: map 82% reduce 0% 11/12/30 18:02:53 INFO mapred.JobClient: map 83% reduce 0% 11/12/30 18:02:59 INFO mapred.JobClient: map 84% reduce 0% 11/12/30 18:03:05 INFO mapred.JobClient: map 85% reduce 0% 11/12/30 18:03:08 INFO mapred.JobClient: map 87% reduce 0% 11/12/30 18:03:14 INFO mapred.JobClient: map 88% reduce 0% 11/12/30 18:03:20 INFO mapred.JobClient: map 89% reduce 0% 11/12/30 18:03:38 INFO mapred.JobClient: map 90% reduce 0% 11/12/30 18:03:41 INFO mapred.JobClient: map 92% reduce 0% 11/12/30 18:03:47 INFO mapred.JobClient: map 93% reduce 0% 11/12/30 18:03:50 INFO mapred.JobClient: map 94% reduce 0% 11/12/30 18:03:56 INFO mapred.JobClient: map 95% reduce 0% 11/12/30 18:04:05 INFO mapred.JobClient: map 96% reduce 0% 11/12/30 18:04:11 INFO mapred.JobClient: map 97% reduce 0% 11/12/30 18:04:14 INFO mapred.JobClient: map 98% reduce 0% 11/12/30 18:04:23 INFO mapred.JobClient: map 99% reduce 0% 11/12/30 18:04:47 INFO mapred.JobClient: map 100% reduce 0% 11/12/30 18:04:58 INFO mapred.JobClient: Job complete: job_201112290558_0005 11/12/30 18:04:58 INFO mapred.JobClient: Counters: 16 11/12/30 18:04:58 INFO mapred.JobClient: Job Counters 11/12/30 18:04:58 INFO mapred.JobClient: SLOTS_MILLIS_MAPS=4761149 11/12/30 18:04:58 INFO mapred.JobClient: Total time spent by all reduces waiting after reserving slots (ms)=0 11/12/30 18:04:58 INFO mapred.JobClient: Total time spent by all maps waiting after reserving slots (ms)=0 11/12/30 18:04:58 INFO mapred.JobClient: Launched map tasks=54 11/12/30 18:04:58 INFO mapred.JobClient: SLOTS_MILLIS_REDUCES=0 11/12/30 18:04:58 INFO mapred.JobClient: File Input Format Counters 11/12/30 18:04:58 INFO mapred.JobClient: Bytes Read=0 11/12/30 18:04:58 INFO mapred.JobClient: File Output Format Counters 11/12/30 18:04:58 INFO mapred.JobClient: Bytes Written=10000000000 11/12/30 18:04:58 INFO mapred.JobClient: FileSystemCounters 11/12/30 18:04:58 INFO mapred.JobClient: FILE_BYTES_READ=113880 11/12/30 18:04:58 INFO mapred.JobClient: HDFS_BYTES_READ=4288 11/12/30 18:04:58 INFO mapred.JobClient: FILE_BYTES_WRITTEN=1180870 11/12/30 18:04:58 INFO mapred.JobClient: HDFS_BYTES_WRITTEN=10000000000 11/12/30 18:04:58 INFO mapred.JobClient: Map-Reduce Framework 11/12/30 18:04:58 INFO mapred.JobClient: Map input records=100000000 11/12/30 18:04:58 INFO mapred.JobClient: Spilled Records=0 11/12/30 18:04:58 INFO mapred.JobClient: Map input bytes=100000000 11/12/30 18:04:58 INFO mapred.JobClient: Map output records=100000000 11/12/30 18:04:58 INFO mapred.JobClient: SPLIT_RAW_BYTES=4288
|
Keywords: Windows Azure, Hadoop, Apache, BigData, Cloud, MapReduce